Chun So Yeon, Son Myung Kook, Park Chae Ri, Lim Chaiho, Kim Hugh I, Kwak Kyungwon, Cho Minhaeng
Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science (IBS) Seoul 02841 Republic of Korea
Department of Chemistry, Korea University Seoul 02841 Republic of Korea
Chem Sci. 2022 Mar 18;13(16):4482-4489. doi: 10.1039/d1sc06047c. eCollection 2022 Apr 20.
Amyloid proteins that undergo self-assembly to form insoluble fibrillar aggregates have attracted much attention due to their role in biological and pathological significance in amyloidosis. This study aims to understand the amyloid aggregation dynamics of insulin (INS) in HO using two-dimensional infrared (2D-IR) spectroscopy. Conventional IR studies have been performed in DO to avoid spectral congestion despite distinct H-D isotope effects. We observed a slowdown of the INS fibrillation process in DO compared to that in HO. The 2D-IR results reveal that different quaternary structures of INS at the onset of the nucleation phase caused the distinct fibrillation pathways of INS in HO and DO. A few different biophysical analysis, including solution-phase small-angle X-ray scattering combined with molecular dynamics simulations and other spectroscopic techniques, support our 2D-IR investigation results, providing insight into mechanistic details of distinct structural transition dynamics of INS in water. We found the delayed structural transition in DO is due to the kinetic isotope effect at an early stage of fibrillation of INS in DO, , enhanced dimer formation of INS in DO. Our 2D-IR and biophysical analysis provide insight into mechanistic details of structural transition dynamics of INS in water. This study demonstrates an innovative 2D-IR approach for studying protein dynamics in HO, which will open the way for observing protein dynamics under biological conditions without IR spectroscopic interference by water vibrations.
经历自组装形成不溶性纤维状聚集体的淀粉样蛋白,因其在淀粉样变性中的生物学和病理学意义而备受关注。本研究旨在利用二维红外(2D-IR)光谱了解胰岛素(INS)在重水(D₂O)中的淀粉样聚集动力学。尽管存在明显的氢-氘同位素效应,但为避免光谱重叠,传统红外研究是在重水中进行的。我们观察到与在水中相比,胰岛素在重水中的纤维化过程减缓。二维红外结果表明,成核阶段开始时胰岛素不同的四级结构导致了其在水和重水中不同的纤维化途径。包括溶液相小角X射线散射结合分子动力学模拟及其他光谱技术在内的一些不同的生物物理分析,支持了我们的二维红外研究结果,为深入了解胰岛素在水中不同结构转变动力学的机制细节提供了依据。我们发现重水中延迟的结构转变是由于胰岛素在重水中纤维化早期的动力学同位素效应,即重水中胰岛素二聚体形成增强。我们的二维红外和生物物理分析为深入了解胰岛素在水中结构转变动力学的机制细节提供了依据。本研究展示了一种用于研究水中蛋白质动力学的创新二维红外方法,这将为在无水分子振动红外光谱干扰的生物条件下观察蛋白质动力学开辟道路。