Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
Department of Medical Ultrasound, The First People's Hospital of Qinzhou, Qinzhou, China.
Acad Radiol. 2024 Jul;31(7):2739-2752. doi: 10.1016/j.acra.2024.02.007. Epub 2024 Mar 7.
RATIONALE AND OBJECTIVES: We aimed to compare superb microvascular imaging (SMI)-based radiomics methods, and contrast-enhanced ultrasound (CEUS)-based radiomics methods to the American College of Radiology Thyroid Imaging Reporting and Data System (ACR TI-RADS) for classifying thyroid nodules (TNs) and reducing unnecessary fine-needle aspiration biopsy (FNAB) rate. MATERIALS AND METHODS: This retrospective study enrolled a dataset of 472 pathologically confirmed TNs. Radiomics characteristics were extracted from B-mode ultrasound (BMUS), SMI, and CEUS images, respectively. After eliminating redundant features, four radiomics scores (Rad-scores) were constructed. Using multivariable logistic regression analysis, four radiomics prediction models incorporating Rad-score and corresponding US features were constructed and validated in terms of discrimination, calibration, decision curve analysis, and unnecessary FNAB rate. RESULTS: The diagnostic performance of the BMUS + SMI radiomics method was better than ACR TI-RADS (area under the curve [AUC]: 0.875 vs. 0.689 for the training cohort, 0.879 vs. 0.728 for the validation cohort) (P < 0.05), and comparable with BMUS + CEUS radiomics method (AUC: 0.875 vs. 0.878 for the training cohort, 0.879 vs. 0.865 for the validation cohort) (P > 0.05). Decision curve analysis showed that the BMUS+SMI radiomics method could achieve higher net benefits than the BMUS radiomics method and ACR TI-RADS when the threshold probability was between 0.13 and 0.88 in the entire cohort. When applying the BMUS+SMI radiomics method, the unnecessary FNAB rate reduced from 43.4% to 13.9% in the training cohort and from 45.6% to 18.0% in the validation cohorts in comparison to ACR TI-RADS. CONCLUSION: The dual-modal SMI-based radiomics method is convenient and economical and can be an alternative to the dual-modal CEUS-based radiomics method in helping radiologists select the optimal clinical strategy for TN management.
背景与目的:本研究旨在比较基于 superb microvascular imaging(SMI)和 contrast-enhanced ultrasound(CEUS)的放射组学方法与美国放射学会甲状腺影像报告和数据系统(ACR TI-RADS)在甲状腺结节(TN)分类和降低不必要的细针抽吸活检(FNAB)率方面的性能。 材料与方法:本回顾性研究纳入了 472 例经病理证实的 TN 患者。分别从 B 超(BMUS)、SMI 和 CEUS 图像中提取放射组学特征,经消除冗余特征后,构建了 4 个放射组学评分(Rad-score)。利用多变量逻辑回归分析,构建并验证了包含 Rad-score 和相应 US 特征的 4 个放射组学预测模型,以评估其在判别能力、校准度、决策曲线分析和不必要 FNAB 率方面的性能。 结果:BMUS+SMI 放射组学方法的诊断性能优于 ACR TI-RADS(训练队列的曲线下面积 [AUC]:0.875 比 0.689,验证队列:0.879 比 0.728)(P<0.05),与 BMUS+CEUS 放射组学方法相当(训练队列 AUC:0.875 比 0.878,验证队列:0.879 比 0.865)(P>0.05)。决策曲线分析显示,在整个队列中,当阈值概率在 0.13 至 0.88 之间时,BMUS+SMI 放射组学方法比 BMUS 放射组学方法和 ACR TI-RADS 具有更高的净收益。与 ACR TI-RADS 相比,在训练队列和验证队列中,应用 BMUS+SMI 放射组学方法可将不必要的 FNAB 率从 43.4%降至 13.9%和从 45.6%降至 18.0%。 结论:基于 SMI 的双模态放射组学方法方便、经济,可作为基于 CEUS 的双模态放射组学方法的替代方法,帮助放射科医生选择 TN 管理的最佳临床策略。
Front Endocrinol (Lausanne). 2025-7-21
Front Endocrinol (Lausanne). 2025-7-10