Suppr超能文献

基于美国放射学会甲状腺影像报告和数据系统(ACR TI-RADS)构建联合临床特征的影像组学模型以鉴别甲状腺良恶性结节。

Building radiomics models based on ACR TI-RADS combining clinical features for discriminating benign and malignant thyroid nodules.

作者信息

Chen Xingxing, Zhang Lili, Chen Bin, Lu Jiajia

机构信息

Department of Ultrasound, The First People's Hospital of Xiaoshan District, Hangzhou, Zhejiang, China.

Clinical Research Center, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China.

出版信息

Front Endocrinol (Lausanne). 2025 Jul 21;16:1486920. doi: 10.3389/fendo.2025.1486920. eCollection 2025.

Abstract

PURPOSE

The aim of this study was to establish and validate a radiomics model combining the American College of Radiology Thyroid Imaging, Reporting and Data System (ACR TI-RADS) and clinical features and to build a nomogram that could be utilized to enhance the diagnostic performance of malignant thyroid nodules.

METHOD

From January 2019 to September 2022, 329 thyroid nodules from 323 patients who had been referred for surgery and had pathological evidence of them were gathered retrospectively and randomly allocated to training and test cohorts (8:2 ratio). A total of 107 radiomics features were extracted from the US images, and the radiomics score (Rad-score) was constructed using the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm. Different models were created using logistic regression, including the clinic-ACR score (Clin+ACR), clinic-Rad score (Clin+Rad), ACR score-Rad score (ACR+Rad), and combined clinic-ACR score-Rad score (Clin+ACR+Rad). The diagnostic performance of different models was calculated and compared using the area under the receiver operating curve (AUC) and the corresponding sensitivity and specificity.

RESULTS

Eight radiomics features were independent signatures for predicting malignant TNs, with malignant TNs having higher Rad-scores in both cohorts ( < 0.05). The Clin+ACR+Rad model showed excellent diagnostic prediction ability in both the training (AUC = 0.958) and test datasets (AUC = 0.937), significantly outperforming other models including Rad-score (AUC = 0.890, 0.856), Clin+Rad (AUC = 0.895, 0.859), ACR+Rad (AUC = 0.943, 0.934), and Clin+ACR (AUC = 0.784, 0.785) (all < 0.05). The calibration curve demonstrated that the mean absolute error in the training group was just 0.020 and in the test cohort was 0.033. To evaluate the clinical utility of the nomogram in reducing unnecessary biopsies, we further analyzed the performance of our integrated model (Clin+ACR+Rad) compared to the traditional ACR TI-RADS system at different probability thresholds. At the statistically optimal threshold of 0.386, the unnecessary biopsy rate decreased from 46.97% to 22.05% in the training cohort and from 45.83% to 21.05% in the test cohort.

CONCLUSION

The current study offers preliminary support that the model of combined clinic-ACR score-radiomics score can be helpful for predicting malignancy in thyroid nodules by looking at a retrospective cohort of surgically treated thyroid nodules. The Clin-ACR-Rad nomogram may be a more practical instrument and more accurate prediction model for malignant thyroid nodules.

摘要

目的

本研究旨在建立并验证一种结合美国放射学会甲状腺影像报告和数据系统(ACR TI-RADS)及临床特征的放射组学模型,并构建一种可用于提高甲状腺恶性结节诊断性能的列线图。

方法

回顾性收集2019年1月至2022年9月期间323例因手术转诊且有病理证据的患者的329个甲状腺结节,并将其随机分配至训练组和测试组(比例为8:2)。从超声图像中提取总共107个放射组学特征,并使用最小绝对收缩和选择算子(LASSO)算法构建放射组学评分(Rad-score)。使用逻辑回归创建不同模型,包括临床-ACR评分(Clin+ACR)、临床-Rad评分(Clin+Rad)、ACR评分-Rad评分(ACR+Rad)以及联合临床-ACR评分-Rad评分(Clin+ACR+Rad)。使用受试者操作特征曲线下面积(AUC)以及相应的敏感性和特异性计算并比较不同模型的诊断性能。

结果

八个放射组学特征是预测恶性甲状腺结节的独立特征,两个队列中的恶性甲状腺结节均具有较高的Rad-score(<0.05)。Clin+ACR+Rad模型在训练数据集(AUC = 0.958)和测试数据集(AUC = 0.937)中均显示出优异的诊断预测能力,显著优于其他模型,包括Rad-score(AUC = 0.890, 0.856)、Clin+Rad(AUC = 0.895, 0.859)、ACR+Rad(AUC = 0.943, 0.934)和Clin+ACR(AUC = 0.784, 0.785)(均<0.05)。校准曲线表明,训练组的平均绝对误差仅为0.020,测试队列的平均绝对误差为0.033。为评估列线图在减少不必要活检方面的临床效用,我们进一步分析了我们的综合模型(Clin+ACR+Rad)与传统ACR TI-RADS系统在不同概率阈值下的性能。在统计学最优阈值0.386时,训练队列中的不必要活检率从46.97%降至22.05%,测试队列中的不必要活检率从45.83%降至21.05%。

结论

本研究提供了初步支持,即联合临床-ACR评分-放射组学评分模型通过观察手术治疗的甲状腺结节回顾性队列,有助于预测甲状腺结节的恶性程度。Clin-ACR-Rad列线图可能是一种更实用的工具和更准确的甲状腺恶性结节预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a21a/12318720/1871a8ad6e6c/fendo-16-1486920-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验