在大规模数字心理健康干预期间,实时心率变异性生物反馈幅度因年龄、性别以及心理健康和身体健康状况而异。
Real-time heart rate variability biofeedback amplitude during a large-scale digital mental health intervention differed by age, gender, and mental and physical health.
机构信息
Meru Health, San Mateo, California, USA.
Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California, USA.
出版信息
Psychophysiology. 2024 Jun;61(6):e14533. doi: 10.1111/psyp.14533. Epub 2024 Mar 7.
Heart rate variability biofeedback (HRVB) is an efficacious treatment for depression and anxiety. However, translation to digital mental health interventions (DMHI) requires computing and providing real-time HRVB metrics in a personalized and user-friendly fashion. To address these gaps, this study validates a real-time HRVB feedback algorithm and characterizes the association of the main algorithmic summary metric-HRVB amplitude-with demographic, psychological, and health factors. We analyzed HRVB data from 5158 participants in a therapist-supported DMHI incorporating slow-paced breathing to treat depression or anxiety symptoms. A real-time feedback metric of HRVB amplitude and a gold-standard research metric of low-frequency (LF) power were computed for each session and then averaged within-participants over 2 weeks. We provide HRVB amplitude values, stratified by age and gender, and we characterize the multivariate associations of HRVB amplitude with demographic, psychological, and health factors. Real-time HRVB amplitude correlated strongly (r = .93, p < .001) with the LF power around the respiratory frequency (~0.1 Hz). Age was associated with a significant decline in HRVB (β = -0.46, p < .001), which was steeper among men than women, adjusting for demographic, psychological, and health factors. Resting high- and low-frequency power, body mass index, hypertension, Asian race, depression symptoms, and trauma history were significantly associated with HRVB amplitude in multivariate analyses (p's < .01). Real-time HRVB amplitude correlates highly with a research gold-standard spectral metric, enabling automated biofeedback delivery as a potential treatment component of DMHIs. Moreover, we identify demographic, psychological, and health factors relevant to building an equitable, accurate, and personalized biofeedback user experience.
心率变异性生物反馈(HRVB)是一种有效的治疗抑郁症和焦虑症的方法。然而,将其转化为数字心理健康干预(DMHI)需要以个性化和用户友好的方式计算和提供实时 HRVB 指标。为了解决这些差距,本研究验证了一种实时 HRVB 反馈算法,并描述了主要算法总结指标——HRVB 幅度与人口统计学、心理学和健康因素的关联。我们分析了在治疗师支持的 DMHI 中纳入慢节奏呼吸以治疗抑郁或焦虑症状的 5158 名参与者的 HRVB 数据。为每个会话计算了实时 HRVB 幅度反馈指标和低频(LF)功率的黄金标准研究指标,然后在 2 周内对参与者进行平均。我们提供了按年龄和性别分层的 HRVB 幅度值,并描述了 HRVB 幅度与人口统计学、心理学和健康因素的多变量关联。实时 HRVB 幅度与 LF 功率(约 0.1 Hz)在呼吸频率周围高度相关(r =.93,p <.001)。年龄与 HRVB 显著下降相关(β = -0.46,p <.001),在调整了人口统计学、心理学和健康因素后,男性比女性的下降更为陡峭。静息高、低频功率、体重指数、高血压、亚洲种族、抑郁症状和创伤史在多变量分析中与 HRVB 幅度显著相关(p <.01)。实时 HRVB 幅度与研究黄金标准频谱指标高度相关,使自动化生物反馈成为 DMHI 潜在治疗成分成为可能。此外,我们确定了与构建公平、准确和个性化生物反馈用户体验相关的人口统计学、心理学和健康因素。