Suppr超能文献

时空信息增强图卷积网络:一种用于网约车需求预测的深度学习框架。

Spatio-temporal information enhance graph convolutional networks: A deep learning framework for ride-hailing demand prediction.

作者信息

Tang Zhenglong, Chen Chao

机构信息

College of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.

Sichuan Key Provincial Research Base of Intelligent Tourism, Zigong 643000, China.

出版信息

Math Biosci Eng. 2024 Jan 18;21(2):2542-2567. doi: 10.3934/mbe.2024112.

Abstract

Ride-hailing demand prediction is essential in fundamental research areas such as optimizing vehicle scheduling, improving service quality, and reducing urban traffic pressure. Therefore, achieving accurate and timely demand prediction is crucial. To solve the problems of inaccurate prediction results and difficulty in capturing the influence of external spatiotemporal factors in demand prediction of previous methods, this paper proposes a demand prediction model named as the spatiotemporal information enhance graph convolution network. Through correlation analysis, the model extracts the primary correlation information between external spatiotemporal factors and demand and encodes them to form feature units of the area. We utilize gated recurrent units and graph convolutional networks to capture the spatiotemporal dependencies between demand and external factors, respectively, thereby enhancing the model's perceptiveness to external spatiotemporal factors. To verify the model's validity, we conducted comparative and portability experiments on a relevant dataset of Chengdu City. The experimental results show that the model's prediction is better than the baseline model when incorporating external factors, and the errors are very close under different experimental areas. This result highlights the importance of external spatiotemporal factors for model performance enhancement. Also, it demonstrates the robustness of the model in different environments, providing excellent performance and broad application potential for ride-hailing prediction studies.

摘要

网约车需求预测在诸如优化车辆调度、提高服务质量以及减轻城市交通压力等基础研究领域至关重要。因此,实现准确且及时的需求预测至关重要。为了解决以往方法在需求预测中预测结果不准确以及难以捕捉外部时空因素影响的问题,本文提出了一种名为时空信息增强图卷积网络的需求预测模型。通过相关性分析,该模型提取外部时空因素与需求之间的主要相关信息并对其进行编码,以形成区域的特征单元。我们分别利用门控循环单元和图卷积网络来捕捉需求与外部因素之间的时空依赖性,从而增强模型对外部时空因素的感知能力。为验证该模型的有效性,我们在成都市的一个相关数据集上进行了对比和可移植性实验。实验结果表明,在纳入外部因素时,该模型的预测优于基线模型,且在不同实验区域下误差非常接近。这一结果凸显了外部时空因素对提升模型性能的重要性。此外,它还证明了该模型在不同环境中的稳健性,为网约车预测研究提供了出色的性能和广阔的应用潜力。

相似文献

2
IGAGCN: Information geometry and attention-based spatiotemporal graph convolutional networks for traffic flow prediction.
Neural Netw. 2021 Nov;143:355-367. doi: 10.1016/j.neunet.2021.05.035. Epub 2021 Jun 7.
3
Spatial-Temporal Attention Mechanism and Graph Convolutional Networks for Destination Prediction.
Front Neurorobot. 2022 Jul 6;16:925210. doi: 10.3389/fnbot.2022.925210. eCollection 2022.
4
Spatiotemporal Graph Convolution Multifusion Network for Urban Vehicle Emission Prediction.
IEEE Trans Neural Netw Learn Syst. 2021 Aug;32(8):3342-3354. doi: 10.1109/TNNLS.2020.3008702. Epub 2021 Aug 3.
5
Prediction of Urban Taxi Travel Demand by Using Hybrid Dynamic Graph Convolutional Network Model.
Sensors (Basel). 2022 Aug 10;22(16):5982. doi: 10.3390/s22165982.
6
Spatio-temporal causal graph attention network for traffic flow prediction in intelligent transportation systems.
PeerJ Comput Sci. 2023 Jul 28;9:e1484. doi: 10.7717/peerj-cs.1484. eCollection 2023.
7
A City Shared Bike Dispatch Approach Based on Temporal Graph Convolutional Network and Genetic Algorithm.
Biomimetics (Basel). 2024 Jun 17;9(6):368. doi: 10.3390/biomimetics9060368.
8
TVGCN: Time-varying graph convolutional networks for multivariate and multifeature spatiotemporal series prediction.
Sci Prog. 2024 Jul-Sep;107(3):368504241283315. doi: 10.1177/00368504241283315.
9
Building Personalized Transportation Model for Online Taxi-Hailing Demand Prediction.
IEEE Trans Cybern. 2021 Sep;51(9):4602-4610. doi: 10.1109/TCYB.2020.3000929. Epub 2021 Sep 15.
10
Multitask Learning and GCN-Based Taxi Demand Prediction for a Traffic Road Network.
Sensors (Basel). 2020 Jul 5;20(13):3776. doi: 10.3390/s20133776.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验