Tang Zhenglong, Chen Chao
College of Computer Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China.
Sichuan Key Provincial Research Base of Intelligent Tourism, Zigong 643000, China.
Math Biosci Eng. 2024 Jan 18;21(2):2542-2567. doi: 10.3934/mbe.2024112.
Ride-hailing demand prediction is essential in fundamental research areas such as optimizing vehicle scheduling, improving service quality, and reducing urban traffic pressure. Therefore, achieving accurate and timely demand prediction is crucial. To solve the problems of inaccurate prediction results and difficulty in capturing the influence of external spatiotemporal factors in demand prediction of previous methods, this paper proposes a demand prediction model named as the spatiotemporal information enhance graph convolution network. Through correlation analysis, the model extracts the primary correlation information between external spatiotemporal factors and demand and encodes them to form feature units of the area. We utilize gated recurrent units and graph convolutional networks to capture the spatiotemporal dependencies between demand and external factors, respectively, thereby enhancing the model's perceptiveness to external spatiotemporal factors. To verify the model's validity, we conducted comparative and portability experiments on a relevant dataset of Chengdu City. The experimental results show that the model's prediction is better than the baseline model when incorporating external factors, and the errors are very close under different experimental areas. This result highlights the importance of external spatiotemporal factors for model performance enhancement. Also, it demonstrates the robustness of the model in different environments, providing excellent performance and broad application potential for ride-hailing prediction studies.
网约车需求预测在诸如优化车辆调度、提高服务质量以及减轻城市交通压力等基础研究领域至关重要。因此,实现准确且及时的需求预测至关重要。为了解决以往方法在需求预测中预测结果不准确以及难以捕捉外部时空因素影响的问题,本文提出了一种名为时空信息增强图卷积网络的需求预测模型。通过相关性分析,该模型提取外部时空因素与需求之间的主要相关信息并对其进行编码,以形成区域的特征单元。我们分别利用门控循环单元和图卷积网络来捕捉需求与外部因素之间的时空依赖性,从而增强模型对外部时空因素的感知能力。为验证该模型的有效性,我们在成都市的一个相关数据集上进行了对比和可移植性实验。实验结果表明,在纳入外部因素时,该模型的预测优于基线模型,且在不同实验区域下误差非常接近。这一结果凸显了外部时空因素对提升模型性能的重要性。此外,它还证明了该模型在不同环境中的稳健性,为网约车预测研究提供了出色的性能和广阔的应用潜力。