Gallarati Simone, van Gerwen Puck, Laplaza Ruben, Brey Lucien, Makaveev Alexander, Corminboeuf Clemence
Laboratory for Computational Molecular Design, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
National Center for Competence in Research - Catalysis (NCCR-Catalysis), Ecole Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland.
Chem Sci. 2024 Jan 31;15(10):3640-3660. doi: 10.1039/d3sc06208b. eCollection 2024 Mar 6.
A catalyst possessing a broad substrate scope, in terms of both turnover and enantioselectivity, is sometimes called "general". Despite their great utility in asymmetric synthesis, truly general catalysts are difficult or expensive to discover traditional high-throughput screening and are, therefore, rare. Existing computational tools accelerate the evaluation of reaction conditions from a pre-defined set of experiments to identify the most general ones, but cannot generate entirely new catalysts with enhanced substrate breadth. For these reasons, we report an inverse design strategy based on the open-source genetic algorithm NaviCatGA and on the OSCAR database of organocatalysts to simultaneously probe the catalyst and substrate scope and optimize generality as a primary target. We apply this strategy to the Pictet-Spengler condensation, for which we curate a database of 820 reactions, used to train statistical models of selectivity and activity. Starting from OSCAR, we define a combinatorial space of millions of catalyst possibilities, and perform evolutionary experiments on a diverse substrate scope that is representative of the whole chemical space of tetrahydro-β-carboline products. While privileged catalysts emerge, we show how genetic optimization can address the broader question of generality in asymmetric synthesis, extracting structure-performance relationships from the challenging areas of chemical space.
就转化率和对映选择性而言,具有广泛底物范围的催化剂有时被称为“通用型”。尽管它们在不对称合成中具有很大的实用性,但真正的通用型催化剂很难发现,或者通过传统的高通量筛选方法成本很高,因此非常罕见。现有的计算工具可以加快对预定义实验集的反应条件评估,以确定最通用的条件,但无法生成具有更广泛底物范围的全新催化剂。出于这些原因,我们报告了一种基于开源遗传算法NaviCatGA和有机催化剂OSCAR数据库的逆向设计策略,以同时探索催化剂和底物范围,并将通用性优化作为主要目标。我们将此策略应用于Pictet-Spengler缩合反应,为此我们精心策划了一个包含820个反应的数据库,用于训练选择性和活性的统计模型。从OSCAR开始,我们定义了一个包含数百万种催化剂可能性的组合空间,并在代表四氢-β-咔啉产物整个化学空间的多样化底物范围内进行进化实验。虽然出现了有优势的催化剂,但我们展示了遗传优化如何解决不对称合成中更广泛的通用性问题,从化学空间中具有挑战性的区域提取结构-性能关系。