Suppr超能文献

基于临床、实验室指标和骨骼肌指数的机器学习模型与列线图预测胰十二指肠切除术后胰瘘的发生。

Machine learning models and nomogram based on clinical, laboratory profiles and skeletal muscle index to predict pancreatic fistula after pancreatoduodenectomy.

作者信息

Dai Yile, Huang Wenqian, Xu Liming, Zhang Qiyu, Huang Xiaming

机构信息

The First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China.

Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.

出版信息

Gland Surg. 2024 Feb 29;13(2):164-177. doi: 10.21037/gs-23-410. Epub 2024 Feb 27.

Abstract

BACKGROUND

Postoperative pancreatic fistula (POPF) is a perilous complication that may arise subsequent to pancreaticoduodenectomy (PD). In recent times, there has been an escalating interest in employing machine learning (ML) techniques to aid in treatment decision-making. The purpose of this research is to assess the effectiveness of ML in comparison to conventional models, while also conducting an initial evaluation of the predictive capability of skeletal muscle index (SMI) concerning POPF.

METHODS

This retrospective observational study was carried out at The First Affiliated Hospital of Wenzhou Medical University from January 2012 to January 2021, encompassing data from 269 patients who underwent PD. After identifying independent factors associated with the condition, a logistic regression model was employed to construct a nomogram, alongside the establishment of five ML models. To assess their effectiveness, the best-performing ML model and nomogram were evaluated on a separate test group comprising 77 additional patients. The evaluation involved comparing the area under the curve (AUC) and Brier score.

RESULTS

Among the 269 patients studied, the incidence of POPF was found to be 56.9%, with 106 patients (69.3%) experiencing clinically-relevant POPF. We identified six independent factors associated with POPF, including body mass index (BMI), SMI, pancreatic duct dilatation, tumor size, triglyceride levels, and the ratio of aspartate aminotransferase to alanine aminotransferase (AST/ALT) on the first postoperative day. When evaluated on the test set, the Gaussian Naive Bayes (GNB) model, which was the best-performing ML model, achieved an AUC of 0.824 and a Brier score of 0.175. The corresponding performance indicators for the nomogram were 0.844 for AUC and 0.165 for the Brier score.

CONCLUSIONS

This study found that there is minimal difference between ML and the nomogram based on logistic regression in predicting POPF. Additionally, SMI shows promise as a potential and practical tool for assessing the risk of POPF.

摘要

背景

术后胰瘘(POPF)是胰十二指肠切除术(PD)后可能出现的一种危险并发症。近年来,人们对采用机器学习(ML)技术辅助治疗决策的兴趣日益浓厚。本研究的目的是评估ML与传统模型相比的有效性,同时对骨骼肌指数(SMI)预测POPF的能力进行初步评估。

方法

本回顾性观察研究于2012年1月至2021年1月在温州医科大学附属第一医院进行,纳入了269例行PD手术患者的数据。在确定与该疾病相关的独立因素后,采用逻辑回归模型构建列线图,并建立了5个ML模型。为评估其有效性,在一个由另外77例患者组成的单独测试组中对表现最佳的ML模型和列线图进行了评估。评估包括比较曲线下面积(AUC)和布里尔评分。

结果

在研究的269例患者中,POPF的发生率为56.9%,其中106例患者(69.3%)发生了临床相关的POPF。我们确定了6个与POPF相关的独立因素,包括体重指数(BMI)、SMI、胰管扩张、肿瘤大小、甘油三酯水平以及术后第一天的天冬氨酸转氨酶与丙氨酸转氨酶比值(AST/ALT)。在测试集上进行评估时,表现最佳的ML模型高斯朴素贝叶斯(GNB)模型的AUC为0.824,布里尔评分为0.175。列线图的相应性能指标为AUC为0.844,布里尔评分为0.165。

结论

本研究发现,ML与基于逻辑回归的列线图在预测POPF方面差异极小。此外,SMI有望成为评估POPF风险的一种潜在且实用的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00d2/10915431/6c5bc684ec5e/gs-13-02-164-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验