Polettini Matteo, Neri Izaak
Bologna, Italy.
Department of Mathematics, King's College London, Strand, London, WC2R 2LS UK.
J Stat Phys. 2024;191(3):35. doi: 10.1007/s10955-024-03236-5. Epub 2024 Mar 5.
For continuous-time Markov chains we prove that, depending on the notion of effective affinity , the probability of an edge current to ever become negative is either 1 if else . The result generalizes a "noria" formula to multicyclic networks. We give operational insights on the effective affinity and compare several estimators, arguing that stopping problems may be more accurate in assessing the nonequilibrium nature of a system according to a local observer. Finally we elaborate on the similarity with the Boltzmann formula. The results are based on a constructive first-transition approach.
对于连续时间马尔可夫链,我们证明,根据有效亲和性的概念,如果 ,则边电流变为负值的概率为1,否则为 。该结果将一个“水车”公式推广到多循环网络。我们给出了关于有效亲和性的操作见解,并比较了几种估计器,认为在根据局部观察者评估系统的非平衡性质时,停止问题可能更准确。最后,我们阐述了与玻尔兹曼公式的相似性。这些结果基于一种构造性的首次转移方法。