Suppr超能文献

关于随机 SIS 传染病模型的时间离散化版本:比较分析。

On time-discretized versions of the stochastic SIS epidemic model: a comparative analysis.

机构信息

Department of Statistics and Operations Research, School of Mathematical Sciences, Complutense University of Madrid, Plaza de Ciencias 3, 28040, Madrid, Spain.

Department of Applied Mathematics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, UK.

出版信息

J Math Biol. 2021 Apr 4;82(5):46. doi: 10.1007/s00285-021-01598-y.

Abstract

In this paper, the interest is in the use of time-discretized models as approximations to the continuous-time birth-death (BD) process [Formula: see text] describing the number I(t) of infective hosts at time t in the stochastic [Formula: see text] (SIS) epidemic model under the assumption of an additional source of infection from the environment. We illustrate some simple techniques for analyzing discrete-time versions of the continuous-time BD process [Formula: see text], and we show the similarities and differences between the discrete-time BD process [Formula: see text] of Allen and Burgin (Math Biosci 163:1-33, 2000), which is inspired from the infinitesimal transition probabilities of [Formula: see text], and an alternative discrete-time Markov chain [Formula: see text], which is defined in terms of the number [Formula: see text] of infective hosts at a sequence [Formula: see text] of inspection times. Processes [Formula: see text] and [Formula: see text] can be thought of as a uniformized version and the discrete skeleton of process [Formula: see text], respectively, and are commonly used to derive, in the more general setting of Markov chains, theorems about a continuous-time Markov chain by applying known theorems for discrete-time Markov chains. We shall demonstrate here that the continuous-time BD process [Formula: see text] and its discrete-time counterparts [Formula: see text] and [Formula: see text] behave asymptotically the same in the limit of large time index, while the processes [Formula: see text] and [Formula: see text] differ from the continuous-time BD process [Formula: see text] in terms of the random length of an outbreak, or when considering their dynamics during a predetermined time interval [Formula: see text]. To compare the dynamics of process [Formula: see text] with those of the discrete-time processes [Formula: see text] and [Formula: see text] during [Formula: see text], we consider extreme values (i.e., maximum and minimum number of infectives simultaneously observed during [Formula: see text]) in these three processes. Finally, we illustrate our analytical results by means of a number of numerical examples, where we use the Hellinger distance between two probability distributions to quantify the similarity between the resulting extreme value distributions of either [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text].

摘要

在本文中,我们感兴趣的是使用时间离散化模型作为连续时间出生-死亡(BD)过程[公式:见正文]的近似值,该过程用于描述随机[公式:见正文](SIS)传染病模型中感染宿主数量 I(t)在时间 t 的变化,假设环境中存在额外的感染源。我们举例说明了一些分析连续时间 BD 过程[公式:见正文]的离散时间版本的简单技术,展示了 Allen 和 Burgin(Math Biosci 163:1-33, 2000)启发的离散时间 BD 过程[公式:见正文]与替代离散时间马尔可夫链[公式:见正文]之间的相似性和差异,该马尔可夫链是根据一系列[公式:见正文]检查时间的感染宿主数量[公式:见正文]定义的。过程[公式:见正文]和[公式:见正文]可以分别被视为过程[公式:见正文]的均匀化版本和离散骨架,并且通常用于在更一般的马尔可夫链设置中应用离散时间马尔可夫链的已知定理来推导出关于连续时间马尔可夫链的定理。在这里,我们将证明连续时间 BD 过程[公式:见正文]及其离散时间对应物[公式:见正文]和[公式:见正文]在大时间指数的极限中表现出相同的渐近行为,而过程[公式:见正文]和[公式:见正文]在爆发的随机长度方面与连续时间 BD 过程[公式:见正文]不同,或者在考虑它们在预定时间间隔[公式:见正文]内的动力学时也是如此。为了在[公式:见正文]期间比较过程[公式:见正文]与离散时间过程[公式:见正文]和[公式:见正文]的动力学,我们考虑了这三个过程中的极值(即在[公式:见正文]期间同时观察到的最大和最小感染者数量)。最后,我们通过一些数值例子来说明我们的分析结果,在这些例子中,我们使用两个概率分布之间的 Hellinger 距离来量化[公式:见正文]和[公式:见正文]之间或[公式:见正文]和[公式:见正文]之间的极值分布的相似性。

相似文献

2
6
Hybrid Markov chain models of S-I-R disease dynamics.S-I-R疾病动态的混合马尔可夫链模型
J Math Biol. 2017 Sep;75(3):521-541. doi: 10.1007/s00285-016-1085-2. Epub 2016 Dec 24.
8
Extinction times in the subcritical stochastic SIS logistic epidemic.亚临界随机SIS逻辑斯蒂流行病中的灭绝时间
J Math Biol. 2018 Aug;77(2):455-493. doi: 10.1007/s00285-018-1210-5. Epub 2018 Jan 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验