School of Environment and Energy, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, South China University of Technology, Guangzhou, Guangdong 510000, China.
State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China.
Environ Sci Technol. 2024 Mar 19;58(11):5153-5161. doi: 10.1021/acs.est.3c09077. Epub 2024 Mar 8.
Photothermal catalysis exhibits promising prospects to overcome the shortcomings of high-energy consumption of traditional thermal catalysis and the low efficiency of photocatalysis. However, there is still a challenge to develop catalysts with outstanding light absorption capability and photothermal conversion efficiency for the degradation of atmospheric pollutants. Herein, we introduced the CoO layer and Pt nanoclusters into the three-dimensional (3D) porous membrane through the atomic layer deposition (ALD) technique, leading to a Pt/CoO/AAO monolithic catalyst. The 3D ordered nanochannel structure can significantly enhance the solar absorption capacity through the light-trapping effect. Therefore, the embedded Pt/CoO catalyst can be rapidly heated and the O adsorbed on the Pt clusters can be activated to generate sufficient O species, exhibiting outstanding activity for the diverse VOCs (toluene, acetone, and formaldehyde) degradation. Optical characterization and simulation calculation confirmed that Pt/CoO/AAO exhibited state-of-the-art light absorption and a notable localized surface plasmon resonance (LSPR) effect. In situ diffuse reflectance infrared Fourier transform spectrometry (in situ DRIFTS) studies demonstrated that light irradiation can accelerate the conversion of intermediates during toluene and acetone oxidation, thereby inhibiting byproduct accumulation. Our finding extends the application of AAO's optical properties in photothermal catalytic degradation of air pollutants.
光热催化具有克服传统热催化能耗高和光催化效率低的缺点的广阔前景。然而,开发具有优异的光吸收能力和光热转换效率的催化剂,用于大气污染物的降解,仍然是一个挑战。在此,我们通过原子层沉积(ALD)技术将 CoO 层和 Pt 纳米团簇引入到三维(3D)多孔膜中,得到了 Pt/CoO/AAO 整体式催化剂。3D 有序纳米通道结构可以通过光捕获效应显著提高太阳能吸收能力。因此,嵌入的 Pt/CoO 催化剂可以快速加热,吸附在 Pt 团簇上的 O 可以被激活,产生足够的 O 物种,对各种 VOCs(甲苯、丙酮和甲醛)的降解表现出优异的活性。光学特性表征和模拟计算证实,Pt/CoO/AAO 表现出了先进的光吸收能力和显著的局域表面等离子体共振(LSPR)效应。原位漫反射红外傅里叶变换光谱(in situ DRIFTS)研究表明,光照可以加速甲苯和丙酮氧化过程中中间产物的转化,从而抑制副产物的积累。我们的发现扩展了 AAO 在光热催化降解空气污染物方面的光学性能的应用。