Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia.
MSU Institute for Artificial Intelligence, Lomonosov Moscow State University, Moscow 119192, Russia.
J Chem Inf Model. 2024 Mar 25;64(6):1919-1931. doi: 10.1021/acs.jcim.3c02083. Epub 2024 Mar 8.
Reticular materials, including metal-organic frameworks and covalent organic frameworks, combine the relative ease of synthesis and an impressive range of applications in various fields from gas storage to biomedicine. Diverse properties arise from the variation of building units─metal centers and organic linkers─in almost infinite chemical space. Such variation substantially complicates the experimental design and promotes the use of computational methods. In particular, the most successful artificial intelligence algorithms for predicting the properties of reticular materials are atomic-level graph neural networks, which optionally incorporate domain knowledge. Nonetheless, the data-driven inverse design involving these models suffers from the incorporation of irrelevant and redundant features such as a full atomistic graph and network topology. In this study, we propose a new way of representing materials, aiming to overcome the limitations of existing methods; the message passing is performed on a coarse-grained crystal graph that comprises molecular building units. To highlight the merits of our approach, we assessed the predictive performance and energy efficiency of neural networks built on different materials representations, including composition-based and crystal-structure-aware models. Coarse-grained crystal graph neural networks showed decent accuracy at low computational costs, making them a valuable alternative to omnipresent atomic-level algorithms. Moreover, the presented models can be successfully integrated into an inverse materials design pipeline as estimators of the objective function. Overall, the coarse-grained crystal graph framework is aimed at challenging the prevailing atom-centric perspective on reticular materials design.
网状材料,包括金属有机骨架和共价有机骨架,结合了相对容易的合成和广泛的应用领域,从气体储存到生物医学。不同的性质源于建筑单元的变化——金属中心和有机连接物——在几乎无限的化学空间中。这种变化极大地增加了实验设计的复杂性,并促进了计算方法的使用。特别是,用于预测网状材料性质的最成功的人工智能算法是原子级图神经网络,它可以选择包含领域知识。尽管如此,涉及这些模型的数据驱动的逆向设计仍然存在包含不相关和冗余特征(如全原子图和网络拓扑)的问题。在这项研究中,我们提出了一种新的材料表示方法,旨在克服现有方法的局限性;消息传递是在由分子构建单元组成的粗粒度晶体图上进行的。为了突出我们方法的优点,我们评估了基于不同材料表示的神经网络的预测性能和能量效率,包括基于组成和晶体结构感知的模型。粗粒度晶体图神经网络在低计算成本下表现出相当高的准确性,使其成为普遍存在的原子级算法的有价值的替代方案。此外,所提出的模型可以成功地集成到逆材料设计管道中,作为目标函数的估计器。总的来说,粗粒度晶体图框架旨在挑战网状材料设计中普遍存在的以原子为中心的观点。