Suppr超能文献

从多重图视角提高晶体性质预测能力。

Improving Crystal Property Prediction from a Multiplex Graph Perspective.

机构信息

College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Taiyuan 030024, China.

出版信息

J Chem Inf Model. 2024 Oct 14;64(19):7376-7385. doi: 10.1021/acs.jcim.4c01200. Epub 2024 Oct 3.

Abstract

Graph neural networks (GNNs) have proven to be effective tools for the rapid and accurate prediction of crystal properties. While most existing methods focus on enriching representations of crystal structures, they do not deeply explore the characteristics of crystal graphs and leverage their intrinsic information from a data science perspective. In this work, we propose the potential multiplex crystal graph neural network (PMCGNN) for crystal property prediction. Based on the characteristics of crystal graphs, we reconstruct the crystal graph into a multiplex graph that includes two views: a global crystal graph embodying infinite potentials and a local crystal graph capturing local atomic interactions. We employ graph transformers (GTs) and message passing neural networks (MPNNs) architectures to learn the atomic representations of these two perspectives. Specifically, we augment the GT by incorporating positional encodings and structural encodings from the local crystal graph. This approach promotes interaction between the two perspectives, enabling the model to learn both node positional and graph structural information from different viewpoints through an attention mechanism. As a result, it enhances the model's ability to learn crystal representations. We conduct comprehensive experiments on the JARVIS and the Materials Project data sets for evaluation. Results show that PMCGNN presents superior performance in 9 crystal prediction tasks while maintaining reasonable computational expense.

摘要

图神经网络 (GNNs) 已被证明是快速准确预测晶体性质的有效工具。虽然大多数现有方法都侧重于丰富晶体结构的表示形式,但它们并没有从数据科学的角度深入探索晶体图的特征并利用其内在信息。在这项工作中,我们提出了用于晶体性质预测的潜在复用晶体图神经网络 (PMCGNN)。基于晶体图的特征,我们将晶体图重构为一个复用图,其中包含两个视图:一个体现无限势的全局晶体图和一个捕捉局部原子相互作用的局部晶体图。我们使用图转换器 (GT) 和消息传递神经网络 (MPNN) 架构来学习这两个视角的原子表示。具体来说,我们通过从局部晶体图中加入位置编码和结构编码来增强 GT。这种方法促进了两个视角之间的相互作用,使模型能够通过注意力机制从不同视角学习节点位置和图结构信息。因此,它提高了模型学习晶体表示的能力。我们在 JARVIS 和 Materials Project 数据集上进行了全面的实验评估。结果表明,PMCGNN 在 9 个晶体预测任务中表现出优异的性能,同时保持了合理的计算开销。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验