Suppr超能文献

基于 MRI 的机器学习放射组学在预测尿路上皮癌人类表皮生长因子受体 2 状态中的应用

MRI-Based Machine Learning Radiomics for Preoperative Assessment of Human Epidermal Growth Factor Receptor 2 Status in Urothelial Bladder Carcinoma.

机构信息

Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Department of Urology, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.

出版信息

J Magn Reson Imaging. 2024 Dec;60(6):2694-2704. doi: 10.1002/jmri.29342. Epub 2024 Mar 8.

Abstract

BACKGROUND

The human epidermal growth factor receptor 2 (HER2) has recently emerged as hotspot in targeted therapy for urothelial bladder cancer (UBC). The HER2 status is mainly identified by immunohistochemistry (IHC), preoperative and noninvasive methods for determining HER2 status in UBC remain in searching.

PURPOSES

To investigate whether radiomics features extracted from MRI using machine learning algorithms can noninvasively evaluate the HER2 status in UBC.

STUDY TYPE

Retrospective.

POPULATION

One hundred ninety-five patients (age: 68.7 ± 10.5 years) with 14.3% females from January 2019 to May 2023 were divided into training (N = 156) and validation (N = 39) cohorts, and 43 patients (age: 67.1 ± 13.1 years) with 13.9% females from June 2023 to January 2024 constituted the test cohort (N = 43).

FIELD STRENGTH/SEQUENCE: 3 T, T2-weighted imaging (turbo spin-echo), diffusion-weighted imaging (breathing-free spin echo).

ASSESSMENT

The HER2 status were assessed by IHC. Radiomics features were extracted from MRI images. Pearson correlation coefficient and the least absolute shrinkage and selection operator (LASSO) were applied for feature selection, and six machine learning models were established with optimal features to identify the HER2 status in UBC.

STATISTICAL TESTS

Mann-Whitney U-test, chi-square test, LASSO algorithm, receiver operating characteristic analysis, and DeLong test.

RESULTS

Three thousand forty-five radiomics features were extracted from each lesion, and 22 features were retained for analysis. The Support Vector Machine model demonstrated the best performance, with an AUC of 0.929 (95% CI: 0.888-0.970) and accuracy of 0.859 in the training cohort, AUC of 0.886 (95% CI: 0.780-0.993) and accuracy of 0.846 in the validation cohort, and AUC of 0.712 (95% CI: 0.535-0.889) and accuracy of 0.744 in the test cohort.

DATA CONCLUSION

MRI-based radiomics features combining machine learning algorithm provide a promising approach to assess HER2 status in UBC noninvasively and preoperatively.

EVIDENCE LEVEL

2 TECHNICAL EFFICACY: Stage 3.

摘要

背景

人表皮生长因子受体 2(HER2)最近成为尿路上皮膀胱癌(UBC)靶向治疗的热点。HER2 状态主要通过免疫组织化学(IHC)确定,术前和非侵入性方法仍在探索中。

目的

研究使用机器学习算法从 MRI 中提取的放射组学特征是否可以无创评估 UBC 中的 HER2 状态。

研究类型

回顾性。

人群

本研究纳入了 195 名患者(年龄:68.7±10.5 岁),其中 14.3%为女性,来自 2019 年 1 月至 2023 年 5 月,分为训练(N=156)和验证(N=39)队列,以及 2023 年 6 月至 2024 年 1 月的 43 名患者(年龄:67.1±13.1 岁),其中 13.9%为女性,构成测试队列(N=43)。

磁场强度/序列:3T,T2 加权成像(涡轮自旋回波),弥散加权成像(自由呼吸自旋回波)。

评估

HER2 状态通过 IHC 评估。从 MRI 图像中提取放射组学特征。应用 Pearson 相关系数和最小绝对值收缩和选择算子(LASSO)进行特征选择,并使用最佳特征建立六个机器学习模型,以识别 UBC 中的 HER2 状态。

统计学检验

Mann-Whitney U 检验、卡方检验、LASSO 算法、受试者工作特征分析和 DeLong 检验。

结果

从每个病变中提取了 3045 个放射组学特征,保留了 22 个特征进行分析。支持向量机模型表现最佳,在训练队列中的 AUC 为 0.929(95%CI:0.888-0.970)和准确率为 0.859,在验证队列中的 AUC 为 0.886(95%CI:0.780-0.993)和准确率为 0.846,在测试队列中的 AUC 为 0.712(95%CI:0.535-0.889)和准确率为 0.744。

数据结论

基于 MRI 的放射组学特征结合机器学习算法为无创和术前评估 UBC 中的 HER2 状态提供了一种有前途的方法。

证据水平

2 级,技术功效:3 级。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验