Suppr超能文献

2007-2018 年纽约州各县阿片类药物滥用流行率的估计:贝叶斯时空丰度模型方法。

Estimation of the prevalence of opioid misuse in New York State counties, 2007-2018: a bayesian spatiotemporal abundance model approach.

出版信息

Am J Epidemiol. 2024 Jul 8;193(7):959-967. doi: 10.1093/aje/kwae018.

Abstract

An important challenge to addressing the opioid overdose crisis is the lack of information on the size of the population of people who misuse opioids (PWMO) in local areas. This estimate is needed for better resource allocation, estimation of treatment and overdose outcome rates using appropriate denominators (ie, the population at risk), and proper evaluation of intervention effects. In this study, we used a bayesian hierarchical spatiotemporal integrated abundance model that integrates multiple types of county-level surveillance outcome data, state-level information on opioid misuse, and covariates to estimate the latent (hidden) numbers of PWMO and latent prevalence of opioid misuse across New York State counties (2007-2018). The model assumes that each opioid-related outcome reflects a partial count of the number of PWMO, and it leverages these multiple sources of data to circumvent limitations of parameter estimation associated with other types of abundance models. Model estimates showed a reduction in the prevalence of PWMO during the study period, with important spatial and temporal variability. The model also provided county-level estimates of rates of treatment and opioid overdose using the numbers of PWMO as denominators. This modeling approach can identify the sizes of hidden populations to guide public health efforts in confronting the opioid overdose crisis across local areas. This article is part of a Special Collection on Mental Health.

摘要

解决阿片类药物过量危机的一个重要挑战是缺乏有关当地滥用阿片类药物人群(PWMO)规模的信息。这一估计对于更好的资源分配、使用适当的分母(即风险人群)估计治疗和过量结局的发生率以及适当评估干预效果都是必要的。在这项研究中,我们使用了贝叶斯层次时空综合丰度模型,该模型整合了多种类型的县级监测结果数据、州级阿片类药物滥用信息和协变量,以估计整个纽约州各县的潜在(隐藏)PWMO 数量和阿片类药物滥用的潜在流行率(2007-2018 年)。该模型假设每种阿片类相关结果都反映了 PWMO 数量的部分计数,并且利用这些多种数据源来规避与其他类型丰度模型相关的参数估计限制。模型估计显示,在研究期间,PWMO 的流行率有所下降,存在重要的时空可变性。该模型还提供了使用 PWMO 数量作为分母的治疗和阿片类药物过量发生率的县级估计值。这种建模方法可以识别隐藏人群的规模,从而指导各地应对阿片类药物过量危机的公共卫生工作。本文是“心理健康”特刊的一部分。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验