Suppr超能文献

2017年至2019年纽约57个县的阿片类药物使用障碍患病率:一项贝叶斯证据综合分析。

Opioid use disorder prevalence in 57 New York counties from 2017 to 2019: A Bayesian evidence synthesis.

作者信息

Zheng Tian, Keyes Katherine, Ji Shouxuan, Calderon Anna, Wu Elwin, Doogan Nathan J, Villani Jennifer, Chandler Redonna, Barocas Joshua A, Nguyen Trang, El-Bassel Nabila, Feaster Daniel J

机构信息

Columbia University, Department of Statistics, United States.

Columbia University Mailman School of Public Health, Department of Epidemiology, United States.

出版信息

Drug Alcohol Depend. 2025 Feb 1;267:112548. doi: 10.1016/j.drugalcdep.2025.112548. Epub 2025 Jan 4.

Abstract

INTRODUCTION

Prevalence estimates of opioid use disorder (OUD) at local levels are critical for public health planning and surveillance, yet largely unavailable across the US especially at the local county level.

METHODS

We used a Bayesian evidence synthesis approach to estimate the prevalence of OUD for 57 counties across New York State for 2017-2019 and compare rates of OUD across counties as well as assess the extent of undiagnosed OUD. We developed a generative model to assess conditional probabilistic relations between different subgroups of the OUD population defined by diagnosis, treatment, and overdose fatality.

RESULTS

Average OUD prevalence from 2017 to 2019 ranged from 2.4 % (Westchester County) to 8.3 % (Sullivan County). Overall OUD prevalence estimates were relatively stable year to year, from 4.5 % in 2018 and 4.6 % in both 2017 and 2019. The Bayesian evidence synthesis estimate is consistently higher than the percentage diagnosed in Medicaid, by age and sex. By 2019, the estimated proportion of OUD that was undiagnosed ranged from 16.7 % in Clinton County to 62.7 % in Onondaga County. Counties with relatively high overdose death rates and low buprenorphine prescription percentages had the highest estimated level of undiagnosed OUD.

CONCLUSION

OUD prevalence varied considerably across the state. We identified counties with high OUD and overdose levels and a high proportion of undiagnosed OUD, providing insight into areas of the state in need of rapid expansion of services for people with OUD. Bayesian evidence synthesis approaches for OUD prevalence estimation represent a reliable and rigorous approach to providing local areas with information on OUD magnitude.

摘要

引言

阿片类物质使用障碍(OUD)在地方层面的流行率估计对于公共卫生规划和监测至关重要,但在美国各地,尤其是在地方县级层面,此类数据大多无法获取。

方法

我们采用贝叶斯证据综合方法来估计2017 - 2019年纽约州57个县的OUD流行率,比较各县的OUD发生率,并评估未确诊的OUD程度。我们开发了一个生成模型来评估由诊断、治疗和过量致死定义的OUD人群不同亚组之间的条件概率关系。

结果

2017年至2019年的平均OUD流行率从2.4%(韦斯特切斯特县)到8.3%(沙利文县)不等。总体OUD流行率估计逐年相对稳定,2018年为4.5%,2017年和2019年均为4.6%。按年龄和性别划分,贝叶斯证据综合估计始终高于医疗补助中诊断出的百分比。到2019年,未确诊的OUD估计比例从克林顿县的16.7%到奥农多加县的62.7%不等。过量死亡率相对较高且丁丙诺啡处方百分比较低的县,其未确诊的OUD估计水平最高。

结论

该州各地的OUD流行率差异很大。我们确定了OUD和过量水平较高且未确诊的OUD比例较高的县,这为该州需要迅速扩大针对OUD患者服务的地区提供了见解。用于OUD流行率估计的贝叶斯证据综合方法是一种为地方提供OUD规模信息的可靠且严谨的方法。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验