Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
Department of Mathematics, Embry-Riddle Aeronautical University, Daytona Beach, FL, 32114, USA.
Lab Chip. 2024 Apr 16;24(8):2237-2252. doi: 10.1039/d3lc00694h.
Metastatic tumors have poor prognoses for progression-free and overall survival for all cancer patients. Rare circulating tumor cells (CTCs) and rarer circulating tumor cell clusters (CTCCs) are potential biomarkers of metastatic growth, with CTCCs representing an increased risk factor for metastasis. Current detection platforms are optimized for detection of CTCs only. Microfluidic chips and size exclusion methods have been proposed for CTCC detection; however, they lack utility and real-time monitoring capability. Confocal backscatter and fluorescence flow cytometry (BSFC) has been used for label-free detection of CTCCs in whole blood based on machine learning (ML) enabled peak classification. Here, we expand to a deep-learning (DL)-based, peak detection and classification model to detect CTCCs in whole blood data. We demonstrate that DL-based BSFC has a low false alarm rate of 0.78 events per min with a high Pearson correlation coefficient of 0.943 between detected events and expected events. DL-based BSFC of whole blood maintains a detection purity of 72% and a sensitivity of 35.3% for both homotypic and heterotypic CTCCs starting at a minimum size of two cells. We also demonstrate through artificial spiking studies that DL-based BSFC is sensitive to changes in the number of CTCCs present in the samples and does not add variability in detection beyond the expected variability from Poisson statistics. The performance established by DL-based BSFC motivates its use for detection of CTCCs. Using transfer learning, we additionally validate DL-based BSFC on blood samples from different species and cancer cell types. Further developments of label-free BSFC to enhance throughput could lead to critical applications in the clinical detection of CTCCs and isolation of CTCC from whole blood with minimal disruption and processing steps.
转移性肿瘤对所有癌症患者的无进展生存期和总生存期的预后都很差。罕见的循环肿瘤细胞(CTCs)和更罕见的循环肿瘤细胞簇(CTCCs)是转移性生长的潜在生物标志物,CTCCs 代表转移的风险因素增加。目前的检测平台仅针对 CTC 检测进行了优化。已经提出了微流控芯片和尺寸排阻方法来检测 CTCC;然而,它们缺乏实用性和实时监测能力。共焦背散射和荧光流动 cytometry(BSFC)已基于机器学习(ML)启用的峰分类用于全血中 CTCC 的无标记检测。在这里,我们扩展到基于深度学习(DL)的、基于峰检测和分类的模型,以检测全血中的 CTCC。我们证明,基于 DL 的 BSFC 具有低误报率 0.78 个事件/分钟,检测到的事件和预期事件之间的 Pearson 相关系数为 0.943。基于 DL 的 BSFC 对全血的检测纯度保持在 72%,对同型和异型 CTCC 的灵敏度分别为 35.3%,起始最小尺寸为两个细胞。我们还通过人工尖峰研究证明,基于 DL 的 BSFC 对样品中存在的 CTCC 数量的变化敏感,并且不会在检测中增加超出泊松统计预期变化的可变性。基于 DL 的 BSFC 的性能证明了其用于 CTCC 检测的用途。通过使用迁移学习,我们还在来自不同物种和癌细胞类型的血液样本上验证了基于 DL 的 BSFC。无标记 BSFC 的进一步发展以提高吞吐量可能会导致在临床检测 CTCC 以及从全血中最小化干扰和处理步骤分离 CTCC 方面的关键应用。