Suppr超能文献

通过 WGCNA 和多种机器学习技术挖掘子宫内膜异位症相关的相位分离诊断生物标志物:回顾性和列线图研究。

Mining phase separation-related diagnostic biomarkers for endometriosis through WGCNA and multiple machine learning techniques: a retrospective and nomogram study.

机构信息

Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.

Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China.

出版信息

J Assist Reprod Genet. 2024 May;41(5):1433-1447. doi: 10.1007/s10815-024-03079-9. Epub 2024 Mar 8.

Abstract

OBJECTIVE

The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition.

METHODS

We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers.

RESULTS

Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement.

CONCLUSIONS

This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.

摘要

目的

本研究旨在探讨相分离相关基因在子宫内膜异位症(EMs)发生发展中的作用,并鉴定与该病相关的潜在特征基因。

方法

我们使用 GEO 数据库数据,包括 74 名非子宫内膜异位症和 74 名不同程度的子宫内膜异位症患者。我们的方法包括识别显著的基因模块、探索基因交集、识别核心基因,以及使用加权基因共表达网络分析(WGCNA)和各种机器学习方法筛选潜在的子宫内膜异位症生物标志物。我们还进行了基因集富集分析(GSEA)以了解相关途径。这种综合方法有助于研究子宫内膜异位症的遗传学和潜在生物标志物。

结果

在交集中鉴定出了 9 个基因,提示它们可能参与了子宫内膜异位症的发生。GSEA 将差异表达基因与补体和凝血级联、DNA 复制、趋化因子、顶端质膜过程等途径以及乙型肝炎、人类 T 细胞白血病病毒 1 感染和 COVID-19 等疾病相关联。通过机器学习选择了 5 个特征基因(FOS、CFD、CCNA1、CA4、CST1)用于有效的子宫内膜异位症诊断列线图。GSEA 表明它们在错配修复、细胞周期调控、补体和凝血级联以及 IL-17 炎症中发挥作用。在正常和疾病组之间观察到免疫细胞比例(CD4 T 细胞、CD8 T 细胞、DC、巨噬细胞)的显著差异,提示免疫参与。

结论

本研究提示相分离相关基因可能参与子宫内膜异位症的发病机制,并鉴定出有希望用于诊断的生物标志物。这些发现对进一步研究和开发子宫内膜异位症的新治疗策略具有重要意义。

相似文献

本文引用的文献

1
Biomarkers of endometriosis.内异症的生物标志物。
Clin Chim Acta. 2023 Sep 1;549:117563. doi: 10.1016/j.cca.2023.117563. Epub 2023 Sep 20.
7
Liquid phase separation of NEMO induced by polyubiquitin chains activates NF-κB.多泛素链诱导 NEMO 的液相分离激活 NF-κB。
Mol Cell. 2022 Jul 7;82(13):2415-2426.e5. doi: 10.1016/j.molcel.2022.03.037. Epub 2022 Apr 26.
8
Cell cycle regulation and hematologic malignancies.细胞周期调控与血液系统恶性肿瘤
Blood Sci. 2019 Sep 17;1(1):34-43. doi: 10.1097/BS9.0000000000000009. eCollection 2019 Aug.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验