Computational Medicine and Epidemiology Laboratory (CMEL), The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, China.
Obstetrical Department, The Affiliated Hospital of Qingdao University, Qingdao, China.
J Assist Reprod Genet. 2024 May;41(5):1433-1447. doi: 10.1007/s10815-024-03079-9. Epub 2024 Mar 8.
The objective of this study was to investigate the role of phase separation-related genes in the development of endometriosis (EMs) and to identify potential characteristic genes associated with the condition.
We used GEO database data, including 74 non-endometriosis and 74 varying-degree EMs patients. Our approach involved identifying significant gene modules, exploring gene intersections, identifying core genes, and screening for potential EMs biomarkers using weighted gene co-expression network analysis (WGCNA) and various machine learning approaches. We also performed gene set enrichment analysis (GSEA) to understand relevant pathways. This comprehensive approach helps investigate EMs genetics and potential biomarkers.
Nine genes were identified at the intersection, suggesting their involvement in EMs. GSEA linked DEGs to pathways like complement and coagulation cascades, DNA replication, chemokines, apical plasma membrane processes, and diseases such as Hepatitis B, Human T-cell leukemia virus 1 infection, and COVID-19. Five feature genes (FOS, CFD, CCNA1, CA4, CST1) were selected by machine learning for an effective EMs diagnostic nomogram. GSEA indicated their roles in mismatch repair, cell cycle regulation, complement and coagulation cascades, and IL-17 inflammation. Notable differences in immune cell proportions (CD4 T cells, CD8 T cells, DCs, macrophages) were observed between normal and disease groups, suggesting immune involvement.
This study suggests the potential involvement of phase separation-related genes in the pathogenesis of endometriosis (EMs) and identifies promising biomarkers for diagnosis. These findings have implications for further research and the development of new therapeutic strategies for EMs.
本研究旨在探讨相分离相关基因在子宫内膜异位症(EMs)发生发展中的作用,并鉴定与该病相关的潜在特征基因。
我们使用 GEO 数据库数据,包括 74 名非子宫内膜异位症和 74 名不同程度的子宫内膜异位症患者。我们的方法包括识别显著的基因模块、探索基因交集、识别核心基因,以及使用加权基因共表达网络分析(WGCNA)和各种机器学习方法筛选潜在的子宫内膜异位症生物标志物。我们还进行了基因集富集分析(GSEA)以了解相关途径。这种综合方法有助于研究子宫内膜异位症的遗传学和潜在生物标志物。
在交集中鉴定出了 9 个基因,提示它们可能参与了子宫内膜异位症的发生。GSEA 将差异表达基因与补体和凝血级联、DNA 复制、趋化因子、顶端质膜过程等途径以及乙型肝炎、人类 T 细胞白血病病毒 1 感染和 COVID-19 等疾病相关联。通过机器学习选择了 5 个特征基因(FOS、CFD、CCNA1、CA4、CST1)用于有效的子宫内膜异位症诊断列线图。GSEA 表明它们在错配修复、细胞周期调控、补体和凝血级联以及 IL-17 炎症中发挥作用。在正常和疾病组之间观察到免疫细胞比例(CD4 T 细胞、CD8 T 细胞、DC、巨噬细胞)的显著差异,提示免疫参与。
本研究提示相分离相关基因可能参与子宫内膜异位症的发病机制,并鉴定出有希望用于诊断的生物标志物。这些发现对进一步研究和开发子宫内膜异位症的新治疗策略具有重要意义。