Department of Pharmacology, Yale School of Medicine, New Haven, CT 06520, USA.
Department of Neurology, Yale Comprehensive Epilepsy Center, Yale School of Medicine, New Haven, CT 06520, USA.
Cell Rep. 2024 Mar 26;43(3):113904. doi: 10.1016/j.celrep.2024.113904. Epub 2024 Mar 7.
The KCNT1 gene encodes the sodium-activated potassium channel Slack (KCNT1, K1.1), a regulator of neuronal excitability. Gain-of-function mutations in humans cause cortical network hyperexcitability, seizures, and severe intellectual disability. Using a mouse model expressing the Slack-R455H mutation, we find that Na-dependent K (K) and voltage-dependent sodium (Na) currents are increased in both excitatory and inhibitory cortical neurons. These increased currents, however, enhance the firing of excitability neurons but suppress that of inhibitory neurons. We further show that the expression of Na channel subunits, particularly that of Na1.6, is upregulated and that the length of the axon initial segment and of axonal Na immunostaining is increased in both neuron types. Our study on the coordinate regulation of K currents and the expression of Na channels may provide an avenue for understanding and treating epilepsies and other neurological disorders.
KCNT1 基因编码钠离子激活钾通道 Slack(KCNT1,K1.1),这是神经元兴奋性的调节剂。人类的功能获得性突变会导致皮质网络过度兴奋、癫痫发作和严重的智力障碍。我们使用表达 Slack-R455H 突变的小鼠模型发现,兴奋性和抑制性皮质神经元中的 Na 依赖性 K(K)和电压依赖性钠(Na)电流均增加。然而,这些增加的电流增强了兴奋性神经元的放电,但抑制了抑制性神经元的放电。我们进一步表明,Na 通道亚基的表达,特别是 Na1.6 的表达上调,并且两种神经元类型的轴突起始段的长度和轴突 Na 免疫染色增加。我们关于 K 电流和 Na 通道表达的协调调节的研究可能为理解和治疗癫痫和其他神经障碍提供了一个途径。