Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
Division of Pediatric Neurology, Ann and Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, United States of America; Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, United States of America.
Neurobiol Dis. 2022 Jun 15;168:105713. doi: 10.1016/j.nbd.2022.105713. Epub 2022 Mar 26.
KCNT1 encodes the sodium-activated potassium channel K1.1, expressed preferentially in the frontal cortex, hippocampus, cerebellum, and brainstem. Pathogenic missense variants in KCNT1 are associated with intractable epilepsy, namely epilepsy of infancy with migrating focal seizures (EIMFS), and sleep-related hypermotor epilepsy (SHE). In vitro studies of pathogenic KCNT1 variants support predominantly a gain-of-function molecular mechanism, but how these variants behave in a neuron or ultimately drive formation of an epileptogenic circuit is an important and timely question. Using CRISPR/Cas9 gene editing, we introduced a gain-of-function variant into the endogenous mouse Kcnt1 gene. Compared to wild-type (WT) littermates, heterozygous and homozygous knock-in mice displayed greater seizure susceptibility to the chemoconvulsants kainate and pentylenetetrazole (PTZ), but not to flurothyl. Using acute slice electrophysiology in heterozygous and homozygous Kcnt1 knock-in and WT littermates, we demonstrated that CA1 hippocampal pyramidal neurons exhibit greater amplitude of miniature inhibitory postsynaptic currents in mutant mice with no difference in frequency, suggesting greater inhibitory tone associated with the Kcnt1 mutation. To address alterations in GABAergic signaling, we bred Kcnt1 knock-in mice to a parvalbumin-tdTomato reporter line, and found that parvalbumin-expressing (PV+) interneurons failed to fire repetitively with large amplitude current injections and were more prone to depolarization block. These alterations in firing can be recapitulated by direct application of the K1.1 channel activator loxapine in WT but are occluded in knock-in littermates, supporting a direct channel gain-of-function mechanism. Taken together, these results suggest that K1.1 gain-of-function dampens interneuron excitability to a greater extent than it impacts pyramidal neuron excitability, driving seizure susceptibility in a mouse model of KCNT1-associated epilepsy.
KCNT1 编码钠离子激活钾通道 K1.1,主要表达于前额叶皮层、海马体、小脑和脑干。KCNT1 中的致病性错义变异与难治性癫痫有关,即婴儿期癫痫伴游走性局灶性发作(EIMFS)和睡眠相关运动性癫痫(SHE)。对致病性 KCNT1 变异的体外研究支持主要为获得性功能的分子机制,但这些变异在神经元中如何表现,以及最终如何驱动致痫回路的形成,是一个重要且及时的问题。我们使用 CRISPR/Cas9 基因编辑技术,将一种获得性功能的变异引入内源性小鼠 Kcnt1 基因。与野生型(WT)同窝仔相比,杂合和纯合敲入小鼠对化学惊厥剂海人酸和戊四氮(PTZ)的易感性更高,但对氟烷没有影响。使用急性切片电生理学技术,在杂合和纯合 Kcnt1 敲入和 WT 同窝仔中,我们证明 CA1 海马锥体神经元在突变小鼠中表现出更大的微小抑制性突触后电流幅度,但频率没有差异,这表明与 Kcnt1 突变相关的抑制性张力更大。为了解 GABA 能信号传递的改变,我们将 Kcnt1 敲入小鼠与一个 parvalbumin-tdTomato 报告线进行杂交,发现表达 parvalbumin 的(PV+)中间神经元在大电流注入时无法重复放电,且更容易发生去极化阻断。WT 中直接应用 K1.1 通道激活剂 loxapine 可重现这些放电改变,但在敲入同窝仔中被阻断,支持直接通道获得性功能机制。总之,这些结果表明,K1.1 获得性功能使中间神经元兴奋性降低的程度比它对锥体神经元兴奋性的影响更大,从而导致 KCNT1 相关癫痫小鼠模型的易感性增加。