Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland.
Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland.
Sci Adv. 2024 Mar 8;10(10):eadn2706. doi: 10.1126/sciadv.adn2706.
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
多细胞生物的进化为地球上复杂生命的起源铺平了道路,但对于早期多细胞进化的机制基础知之甚少。在这里,我们研究了多细胞长期进化实验 (MuLTEE) 中多细胞适应的分子基础。我们证明,细胞伸长是增加生物物理韧性和生物体大小的关键适应,这是由伴侣蛋白 Hsp90 的下调所驱动的。从机制上讲,Hsp90 介导的形态发生通过使细胞周期蛋白依赖性激酶 Cdc28 失稳来发挥作用,导致有丝分裂延迟和极化生长延长。Hsp90 或 Cdc28 表达的恢复导致细胞变短,形成更小的细胞群,多细胞适应性降低。总之,我们的研究结果表明,古老的蛋白质折叠系统如何通过揭示新的发育表型来调节,从而在新的生物个体水平上推动快速进化。