Martins Filho Paulo Eduardo Cavalcanti, Haiduke Roberto Luiz Andrade
Departamento de Química e Física Molecular, Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, São Carlos, SP 13560-970, Brazil.
J Phys Chem A. 2024 Mar 21;128(11):2058-2071. doi: 10.1021/acs.jpca.3c08229. Epub 2024 Mar 8.
The presence of halogen bonds (R-X···B; R = substituent group, X = halogen, and B = Lewis base) provides quite amazing molecular systems for electronic structure investigations, presenting unique characteristics of fundamental relevance to supramolecular chemistry among other areas. Here, we use a double-hybrid approach from Density Functional Theory and triple-ζ basis sets augmented with diffuse functions (B2PLYP/def2-TZVPD) to deal with a large group of simple molecular systems containing halogen bonds (XBs), focusing on geometrical structures, binding energies, harmonic vibrational frequencies, and fundamental infrared intensities. Next, the electron densities and their variations on vibrations are carefully studied with the Quantum Theory of Atoms in Molecules (QTAIM) formalism and the charge-charge flux-dipole flux (CCFDF) model. We notice that the R-X stretching mode usually shows vibrational frequency decrements and infrared intensifications during the XB formation. Such features were also observed in hydrogen bonds, although the explanation for the band strengthening is different. Surprisingly, the most important contribution to these intensity increments due to complexation is now the interaction term between the charge flux and dipole flux (CF × DF). Thus, the use of atomic dipoles is mandatory to fully understand this phenomenon. In fact, the huge charge flux contributions to changes in dipole moment derivatives of R-X stretchings on halogen bonding are no longer accompanied by opposite variations of similar magnitudes in polarizations described by atomic dipole fluxes, which provided nearly unaltered values during the XB formation. Thus, the electronic charge flux direction change that takes place in complexes (from B to R) now reinforces dipole moment derivative terms from such atomic polarizations (mainly from the X atom). This intermolecular charge flux seems to be responsible for the unusual features noticed in the R-X stretching mode with the CCDDF/QTAIM model.
卤键(R-X···B;R = 取代基,X = 卤素,B = 路易斯碱)的存在为电子结构研究提供了非常惊人的分子体系,展现出与超分子化学等其他领域基本相关的独特特性。在此,我们采用密度泛函理论的双杂化方法以及带有弥散函数增强的三重ζ基组(B2PLYP/def2-TZVPD)来处理一大组含有卤键(XB)的简单分子体系,重点关注几何结构、结合能、简谐振动频率和基本红外强度。接下来,利用分子中原子的量子理论(QTAIM)形式和电荷 - 电荷通量 - 偶极通量(CCFDF)模型仔细研究电子密度及其振动变化。我们注意到,在卤键形成过程中,R-X伸缩模式通常表现出振动频率降低和红外强度增强。在氢键中也观察到了此类特征,尽管对谱带增强的解释有所不同。令人惊讶的是,由于络合作用导致这些强度增加的最重要贡献现在是电荷通量与偶极通量之间的相互作用项(CF × DF)。因此,必须使用原子偶极来全面理解这一现象。事实上,卤键形成时,R-X伸缩的偶极矩导数变化中巨大的电荷通量贡献不再伴随着原子偶极通量描述的极化中类似大小的相反变化,而原子偶极通量在卤键形成过程中提供了几乎不变的值。因此,络合物中发生的电子电荷通量方向变化(从B到R)现在增强了来自此类原子极化(主要来自X原子)的偶极矩导数项。这种分子间电荷通量似乎是用CCDDF/QTAIM模型在R-X伸缩模式中注意到的异常特征的原因。