Suppr超能文献

研究者发起的研究/试验(IIRs/IITs)研究主题和趋势分析:主题建模研究。

Analysis of research topics and trends in investigator-initiated research/trials (IIRs/IITs): A topic modeling study.

机构信息

Chinese Evidence-Based Medicine Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.

Department of Clinical Research Management, West China Hospital of Sichuan University, Chengdu, China.

出版信息

Medicine (Baltimore). 2024 Mar 8;103(10):e37375. doi: 10.1097/MD.0000000000037375.

Abstract

BACKGROUND

With the exponential growth of publications in the field of investigator-initiated research/trials (IIRs/IITs), it has become necessary to employ text mining and bibliometric analysis as tools for gaining deeper insights into this area of study. By using these methods, researchers can effectively identify and analyze research topics within the field.

METHODS

This study retrieved relevant publications from the Web of Science Core Collection and conducted bioinformatics analysis. The latent Dirichlet allocation model, which is based on machine learning, was utilized to identify subfield research topics.

RESULTS

A total of 4315 articles related to IIRs/IITs were obtained from the Web of Science Core Collection. After excluding duplicates and articles with missing abstracts, a final dataset of 3333 articles was included for bibliometric analysis. The number of publications showed a steady increase over time, particularly since 2000. The United States, Germany, the United Kingdom, the Netherlands, Canada, Denmark, Japan, Switzerland, and France emerged as the most productive countries in terms of IIRs/IITs. The citation analysis revealed intriguing trends, with certain highly cited articles showing a significant increase in citation frequency in recent years. A model with 45 topics was deemed the best fit for characterizing the extensively researched fields within IIRs/IITs. Our analysis revealed 10 top topics that have garnered significant attention, spanning domains such as community health, cancer treatment, brain development and disease mechanisms, nursing research, and stem cell therapy. These top topics offer researchers valuable directions for further investigation and innovation. Additionally, we identified 12 hot topics, which represent the most cutting-edge and highly regarded research areas within the field.

CONCLUSION

This study contributes to a comprehensive understanding of the current research landscape and provides valuable insights for researchers working in this domain.

摘要

背景

随着研究者发起的研究/试验(IIR/IIT)领域出版物的指数级增长,有必要使用文本挖掘和文献计量分析作为深入了解该研究领域的工具。通过使用这些方法,研究人员可以有效地识别和分析该领域的研究主题。

方法

本研究从 Web of Science 核心合集获取相关文献,并进行生物信息学分析。基于机器学习的潜在狄利克雷分配模型被用于识别子领域的研究主题。

结果

从 Web of Science 核心合集共获得 4315 篇与 IIR/IIT 相关的文章。在排除重复和缺少摘要的文章后,最终纳入 3333 篇文章进行文献计量分析。出版物数量随着时间的推移呈稳步增长,尤其是自 2000 年以来。在 IIR/IIT 方面,美国、德国、英国、荷兰、加拿大、丹麦、日本、瑞士和法国是最具生产力的国家。引文分析揭示了一些有趣的趋势,某些高被引文章近年来的引文频次显著增加。一个包含 45 个主题的模型被认为是最适合描述 IIR/IIT 广泛研究领域的模型。我们的分析揭示了 10 个备受关注的顶级主题,涵盖了社区健康、癌症治疗、大脑发育和疾病机制、护理研究和干细胞治疗等领域。这些顶级主题为研究人员提供了进一步研究和创新的有价值方向。此外,我们还确定了 12 个热门主题,代表了该领域最前沿和备受关注的研究领域。

结论

本研究有助于全面了解当前的研究格局,并为该领域的研究人员提供有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5337/10919521/1068637f2f51/medi-103-e37375-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验