Suppr超能文献

在原本非铁电的SrTiO₃纳米薄膜中实现多种铁电拓扑结构的机械起伏效应

Mechanical Rippling for Diverse Ferroelectric Topologies in Otherwise Nonferroelectric SrTiO_{3} Nanofilms.

作者信息

Xu Tao, Wu Chengsheng, Zheng Sizheng, Wang Yu, Wang Jie, Hirakata Hiroyuki, Kitamura Takayuki, Shimada Takahiro

机构信息

Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.

Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.

出版信息

Phys Rev Lett. 2024 Feb 23;132(8):086801. doi: 10.1103/PhysRevLett.132.086801.

Abstract

Polar topological structures such as skyrmions and merons have become an emerging research field due to their rich functionalities and promising applications in information storage. Up to now, the obtained polar topological structures are restricted to a few limited ferroelectrics with complex heterostructures, limiting their large-scale practical applications. Here, we circumvent this limitation by utilizing a nanoscale ripple-generated flexoelectric field as a universal means to create rich polar topological configurations in nonpolar nanofilms in a controllable fashion. Our extensive phase-field simulations show that a rippled SrTiO_{3} nanofilm with a single bulge activates polarizations that are stabilized in meron configurations, which further undergo topological transitions to Néel-type and Bloch-type skyrmions upon varying the geometries. The formation of these topologies originates from the curvature-dependent flexoelectric field, which extends beyond the common mechanism of geometric confinement that requires harsh energy conditions and strict temperature ranges. We further demonstrate that the rippled nanofilm with three-dimensional ripple patterns can accommodate other unreported modulated phases of ferroelectric topologies, which provide ferroelectric analogs to the complex spin topologies in magnets. The present study not only unveils the intriguing nanoscale electromechanical properties but also opens exciting opportunities to design various functional topological phenomena in flexible materials.

摘要

诸如斯格明子和磁单极子等极性拓扑结构因其丰富的功能以及在信息存储方面的广阔应用前景,已成为一个新兴的研究领域。到目前为止,所获得的极性拓扑结构仅限于少数具有复杂异质结构的铁电体,这限制了它们的大规模实际应用。在此,我们通过利用纳米级波纹产生的挠曲电场,以一种可控的方式在非极性纳米薄膜中创建丰富的极性拓扑构型,从而规避了这一限制。我们广泛的相场模拟表明,具有单个凸起的波纹状SrTiO₃纳米薄膜会激活稳定在磁单极构型中的极化,随着几何形状的变化,这些极化会进一步经历拓扑转变为奈尔型和布洛赫型斯格明子。这些拓扑结构的形成源于与曲率相关的挠曲电场,这超出了需要苛刻能量条件和严格温度范围的几何约束的常见机制。我们进一步证明,具有三维波纹图案的波纹状纳米薄膜可以容纳其他未报道的铁电拓扑调制相,这些相为磁体中的复杂自旋拓扑提供了铁电类似物。本研究不仅揭示了有趣的纳米级机电特性,还为在柔性材料中设计各种功能性拓扑现象开辟了令人兴奋的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验