Xu Tao, Qian Tao, Pang Jiafei, Zhang Jingtong, Li Sheng, He Ri, Wang Jie, Shimada Takahiro
Department of Mechanical Engineering and Science, Kyoto University, Nishikyo-ku, Kyoto 615-8540, Japan.
Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
Research (Wash D C). 2025 Feb 17;8:0621. doi: 10.34133/research.0621. eCollection 2025.
Atomic-scale polar topologies such as skyrmions offer important potential as technological paradigms for future electronic devices. Despite recent advances in the exploration of topological domains in complicated perovskite oxide superlattices, these exotic ferroic orders are unavoidably disrupted at the atomic scale due to intrinsic size effects. Here, based on first-principles calculations, we propose a new strategy to design robust ferroelectricity in atomically thin films by properly twisting 2 monolayers of centrosymmetric SrTiO. Surprisingly, the emerged polarization vectors curl in the plane, forming a polar skyrmion lattice with each skyrmion as small as 1 nm, representing the highest polar skyrmion density to date. The emergent ferroelectricity originates from strong interlayer coupling effects and the resulting unique strain fields with obvious ion displacements, contributing to electric polarization comparable to that of PbTiO. Moreover, we observe ultraflat bands (band width of less than 5 meV) at the valence band edge across a wide range of twist angles, which show widths that are smaller than those of common twisted bilayers of 2-dimensional materials. The present study not only overcomes the critical size limitation for ferroelectricity but also reveals a novel approach for achieving atomic-scale polar topologies, with important potential for applications in skyrmion-based ultrahigh-density memory technologies.
诸如斯格明子等原子尺度的极性拓扑结构作为未来电子器件的技术范式具有重要潜力。尽管在复杂钙钛矿氧化物超晶格中拓扑畴的探索方面取得了最新进展,但由于内在尺寸效应,这些奇异的铁电有序在原子尺度上不可避免地会被破坏。在此,基于第一性原理计算,我们提出了一种新策略,通过适当扭曲两层中心对称的SrTiO来设计原子薄膜中的稳健铁电性。令人惊讶的是,出现的极化矢量在平面内卷曲,形成了一个极性斯格明子晶格,每个斯格明子小至1纳米,代表了迄今为止最高的极性斯格明子密度。这种出现的铁电性源于强层间耦合效应以及由此产生的具有明显离子位移的独特应变场,其产生的极化与PbTiO相当。此外,我们在很宽的扭曲角度范围内观察到价带边缘存在超平带(带宽小于5毫电子伏特),其带宽比二维材料常见的扭曲双层的带宽小。本研究不仅克服了铁电性的关键尺寸限制,还揭示了一种实现原子尺度极性拓扑结构的新方法,在基于斯格明子的超高密度存储技术中具有重要的应用潜力。