Suppr超能文献

分析复发性急性缺血性脑卒中的院前延误:可解释机器学习的新见解。

Analyzing prehospital delays in recurrent acute ischemic stroke: Insights from interpretable machine learning.

机构信息

Department of Neurology, People's Hospital of Longhua, 38 Jinglong Jianshe Road, Longhua District, Shenzhen 518109, China.

The Third People's Hospital of Shenzhen, Shenzhen 518112, China; National Clinical Research Center for Infectious Diseases, 29 Bulan Road, Longgang District, Shenzhen 518112, China.

出版信息

Patient Educ Couns. 2024 Jun;123:108228. doi: 10.1016/j.pec.2024.108228. Epub 2024 Mar 4.

Abstract

OBJECTIVE

This study investigates prehospital delays in recurrent Acute Ischemic Stroke (AIS) patients, aiming to identify key factors contributing to these delays to inform effective interventions.

METHODS

A retrospective cohort analysis of 1419 AIS patients in Shenzhen from December 2021 to August 2023 was performed. The study applied the Extreme Gradient Boosting (XGBoost) algorithm and SHapley Additive exPlanations (SHAP) for identifying determinants of delay.

RESULTS

Living with others and lack of stroke knowledge emerged as significant risk factors for delayed hospital presentation in recurrent AIS patients. Key features impacting delay times included residential status, awareness of stroke symptoms, presence of conscious disturbance, diabetes mellitus awareness, physical weakness, mode of hospital presentation, type of stroke, and presence of coronary artery disease.

CONCLUSION

Prehospital delays are similarly prevalent among both recurrent and first-time AIS patients, highlighting a pronounced knowledge gap in the former group. This discovery underscores the urgent need for enhanced stroke education and management.

PRACTICE IMPLICATION

The similarity in prehospital delay patterns between recurrent and first-time AIS patients emphasizes the necessity for public health initiatives and tailored educational programs. These strategies aim to improve stroke response times and outcomes for all patients.

摘要

目的

本研究旨在调查复发性急性缺血性脑卒中(AIS)患者的院前延误情况,以确定导致这些延误的关键因素,为有效的干预措施提供信息。

方法

对 2021 年 12 月至 2023 年 8 月期间深圳的 1419 例 AIS 患者进行回顾性队列分析。本研究应用极端梯度提升(XGBoost)算法和 SHapley Additive exPlanations(SHAP)来识别延误的决定因素。

结果

与他人同住和缺乏脑卒中知识是复发性 AIS 患者延迟就诊的显著危险因素。影响延迟时间的关键特征包括居住状况、对脑卒中症状的认识、有意识障碍、对糖尿病的认识、身体虚弱、就诊方式、脑卒中类型和冠状动脉疾病的存在。

结论

复发性和首次 AIS 患者的院前延误情况相似,这突出表明前者存在明显的知识差距。这一发现强调了加强脑卒中教育和管理的迫切需要。

实践意义

复发性和首次 AIS 患者的院前延误模式相似,强调了公共卫生倡议和针对性教育计划的必要性。这些策略旨在改善所有患者的脑卒中反应时间和结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验