Suppr超能文献

一种具有挤压与激励注意力模块的多分支卷积神经网络用于基于脑电图的运动想象信号分类

A Multi-Branch Convolutional Neural Network with Squeeze-and-Excitation Attention Blocks for EEG-Based Motor Imagery Signals Classification.

作者信息

Altuwaijri Ghadir Ali, Muhammad Ghulam, Altaheri Hamdi, Alsulaiman Mansour

机构信息

Department of Computer Engineering, College of Computer and Information Sciences (CCIS), King Saud University, Riyadh 11543, Saudi Arabia.

Centre of Smart Robotics Research (CS2R), King Saud University, Riyadh 11543, Saudi Arabia.

出版信息

Diagnostics (Basel). 2022 Apr 15;12(4):995. doi: 10.3390/diagnostics12040995.

Abstract

Electroencephalography-based motor imagery (EEG-MI) classification is a critical component of the brain-computer interface (BCI), which enables people with physical limitations to communicate with the outside world via assistive technology. Regrettably, EEG decoding is challenging because of the complexity, dynamic nature, and low signal-to-noise ratio of the EEG signal. Developing an end-to-end architecture capable of correctly extracting EEG data's high-level features remains a difficulty. This study introduces a new model for decoding MI known as a Multi-Branch EEGNet with squeeze-and-excitation blocks (MBEEGSE). By clearly specifying channel interdependencies, a multi-branch CNN model with attention blocks is employed to adaptively change channel-wise feature responses. When compared to existing state-of-the-art EEG motor imagery classification models, the suggested model achieves good accuracy (82.87%) with reduced parameters in the BCI-IV2a motor imagery dataset and (96.15%) in the high gamma dataset.

摘要

基于脑电图的运动想象(EEG-MI)分类是脑机接口(BCI)的关键组成部分,它使身体有缺陷的人能够通过辅助技术与外界进行交流。遗憾的是,由于脑电图信号的复杂性、动态特性和低信噪比,脑电图解码具有挑战性。开发一种能够正确提取脑电图数据高级特征的端到端架构仍然是一个难题。本研究引入了一种用于解码运动想象的新模型,称为具有挤压与激励块的多分支脑电图网络(MBEEGSE)。通过明确指定通道间的相互依赖关系,采用具有注意力块的多分支卷积神经网络模型来自适应地改变通道维度的特征响应。与现有的最先进的脑电图运动想象分类模型相比,所提出的模型在BCI-IV2a运动想象数据集中以减少的参数实现了良好的准确率(82.87%),在高伽马数据集中达到了96.15%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aa7/9032940/8533ea20535b/diagnostics-12-00995-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验