Liao Wenzhe, Miao Zipeng, Liang Shuaibo, Zhang Linyan, Li Chen
School of Artificial Intelligence, Hebei University of Technology, Tianjin, China.
Tianjin Key Laboratory of Environment, Nutrition and Public Health, Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin, China.
Front Neurosci. 2025 Feb 5;19:1543508. doi: 10.3389/fnins.2025.1543508. eCollection 2025.
A brain-computer interface (BCI) is an emerging technology that aims to establish a direct communication pathway between the human brain and external devices. Motor imagery electroencephalography (MI-EEG) signals are analyzed to infer users' intentions during motor imagery. These signals hold potential for applications in rehabilitation training and device control. However, the classification accuracy of MI-EEG signals remains a key challenge for the development of BCI technology.
This paper proposes a composite improved attention convolutional network (CIACNet) for MI-EEG signals classification. CIACNet utilizes a dual-branch convolutional neural network (CNN) to extract rich temporal features, an improved convolutional block attention module (CBAM) to enhance feature extraction, temporal convolutional network (TCN) to capture advanced temporal features, and multi-level feature concatenation for more comprehensive feature representation.
The CIACNet model performs well on both the BCI IV-2a and BCI IV-2b datasets, achieving accuracies of 85.15 and 90.05%, respectively, with a kappa score of 0.80 on both datasets. These results indicate that the CIACNet model's classification performance exceeds that of four other comparative models.
Experimental results demonstrate that the proposed CIACNet model has strong classification capabilities and low time cost. Removing one or more blocks results in a decline in the overall performance of the model, indicating that each block within the model makes a significant contribution to its overall effectiveness. These results demonstrate the ability of the CIACNet model to reduce time costs and improve performance in motor imagery brain-computer interface (MI-BCI) systems, while also highlighting its practical applicability.
脑机接口(BCI)是一种新兴技术,旨在在人脑与外部设备之间建立直接通信通路。运动想象脑电图(MI-EEG)信号在运动想象过程中被分析以推断用户意图。这些信号在康复训练和设备控制方面具有应用潜力。然而,MI-EEG信号的分类准确率仍然是BCI技术发展的关键挑战。
本文提出一种用于MI-EEG信号分类的复合改进注意力卷积网络(CIACNet)。CIACNet利用双分支卷积神经网络(CNN)提取丰富的时间特征,改进的卷积块注意力模块(CBAM)增强特征提取,时间卷积网络(TCN)捕捉高级时间特征,并通过多级特征拼接实现更全面的特征表示。
CIACNet模型在BCI IV-2a和BCI IV-2b数据集上均表现良好,准确率分别达到85.15%和90.05%,两个数据集的kappa分数均为0.80。这些结果表明CIACNet模型的分类性能超过其他四个对比模型。
实验结果表明,所提出的CIACNet模型具有强大的分类能力和较低的时间成本。去除一个或多个模块会导致模型整体性能下降,这表明模型中的每个模块对其整体有效性都有显著贡献。这些结果证明了CIACNet模型在运动想象脑机接口(MI-BCI)系统中降低时间成本和提高性能的能力,同时也突出了其实际适用性。