Suppr超能文献

多变量典型相关分析确定了慢性肾脏病的其他遗传变异。

Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease.

机构信息

Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.

Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK.

出版信息

NPJ Syst Biol Appl. 2024 Mar 9;10(1):28. doi: 10.1038/s41540-024-00350-8.

Abstract

Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.

摘要

慢性肾脏病 (CKD) 与肾功能有遗传关联。单变量全基因组关联研究 (GWAS) 已经确定了与估计肾小球滤过率 (eGFR) 和血尿素氮 (BUN) 相关的单核苷酸多态性 (SNP),这两个指标是互补的肾功能标志物。然而,通过多变量统计分析是否可以鉴定出其他与肾功能相关的 SNP 尚不清楚。为了解决这个问题,我们应用了典型相关分析 (CCA),这是一种多变量方法,对两个个体水平的 CKD 基因型数据集进行分析,并对两个已发表的 GWAS 汇总统计数据集进行了 metaCCA 分析。我们通过具有高复制率的已发表的单变量 GWAS 鉴定了先前与肾功能相关的 SNP,验证了 metaCCA 方法的有效性。然后,我们扩展了发现并共同鉴定了这两个肾功能标志物的先前未报道的先导 SNP。这些 SNP 与 CKD 和健康个体之间存在显著差异表达的基因存在表达数量性状基因座 (eQTL) 共定位。其中一些鉴定出的先导错义 SNP 被预测具有功能影响,包括 SLC14A2 基因。我们还鉴定了先前未报道的先导 SNP,这些 SNP 与 CKDGen、国家统一肾脏转化研究企业 (NURTuRE)-CKD 和索尔福德肾脏研究 (SKS) 数据集的两个肾功能标志物都具有显著相关性。其中,rs3094060 与 FLOT1 基因表达共定位,在 NURTURE-CKD 和 SKS 中,CKD 病例比一般人群更常见。总的来说,通过使用 CCA 的多变量分析,我们鉴定出了更多与肾功能和 CKD 相关的 SNP 和基因,可以优先进行进一步的 CKD 分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/529e/10924093/1cc65cac8292/41540_2024_350_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验