Suppr超能文献

自稳定聚噻吩的原位等离子体聚合实现了具有超长循环寿命的无枝晶锂金属阳极。

In Situ Plasma Polymerization of Self-Stabilized Polythiophene Enables Dendrite-Free Lithium Metal Anodes with Ultra-Long Cycle Life.

作者信息

Cao Shengling, Ning Jing, He Xin, Wang Tianqi, Xu Cheng, Chen Manlin, Wang Kangli, Zhou Min, Jiang Kai

机构信息

State Key Laboratory of Advanced Electromagnetic Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.

出版信息

Small. 2024 Aug;20(31):e2311204. doi: 10.1002/smll.202311204. Epub 2024 Mar 9.

Abstract

Constructing a flexible and chemically stable multifunctional layer for the lithium (Li) metal anodes is a highly effective approach to improve the uneven deposition of Li and suppress the dendrite growth. Herein, an organic protecting layer of polythiophene is in situ polymerized on the Li metal via plasma polymerization. Compared with the chemically polymerized thiophene (C-PTh), the plasma polymerized thiophene layer (P-PTh), with a higher Young's modulus of 8.1 GPa, shows strong structural stability due to the chemical binding of the polythiophene and Li. Moreover, the nucleophilic C─S bond of polythiophene facilitates the decomposition of Li salts in the electrolytes, promoting the formation of LiF-rich solid electrolyte interface (SEI) layers. The synergetic effect of the rigid LiF as well as the flexible PTh-Li can effectively regulate the uniform Li deposition and suppress the growth of Li dendrites during the repeated stripping-plating, enabling the Li anodes with long-cycling lifespan over 8000 h (1 mA cm, 1 mAh cm and 2500 h (10 mA cm, 10 mAh cm). Since the plasma polymerization is facile (5-20 min) and environmentally friendly (solvent-free), this work offers a novel and promising strategy for the construction of the forthcoming generation of high-energy-density batteries.

摘要

构建用于锂金属负极的柔性且化学稳定的多功能层是改善锂不均匀沉积和抑制枝晶生长的一种高效方法。在此,通过等离子体聚合在锂金属上原位聚合聚噻吩有机保护层。与化学聚合噻吩(C-PTh)相比,具有8.1 GPa更高杨氏模量的等离子体聚合噻吩层(P-PTh)由于聚噻吩与锂的化学结合而表现出很强的结构稳定性。此外,聚噻吩的亲核C─S键促进电解质中锂盐的分解,促进富含LiF的固体电解质界面(SEI)层的形成。刚性LiF以及柔性PTh-Li的协同作用可以有效地调节锂的均匀沉积,并在反复的剥离-电镀过程中抑制锂枝晶的生长,使锂负极在8000 h(1 mA cm²,1 mAh cm²)以上具有长循环寿命,以及在2500 h(10 mA cm²,10 mAh cm²)。由于等离子体聚合简便(5-20分钟)且环保(无溶剂),这项工作为构建下一代高能量密度电池提供了一种新颖且有前景的策略。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验