Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain.
Departmento de Mineralogía y Petrología, Universidad de Granada, Granada 18071, Spain.
Acta Biomater. 2024 Apr 1;178:244-256. doi: 10.1016/j.actbio.2024.03.001. Epub 2024 Mar 7.
Guinea fowl eggshells have an unusual structural arrangement that is different from that of most birds, consisting of two distinct layers with different microstructures. This bilayered organization, and distinct microstructural characteristics, provides it with exceptional mechanical properties. The inner layer, constituting about one third of the eggshell thickness, contains columnar calcite crystal units arranged vertically as in most bird shells. However, the thicker outer layer has a more complex microstructural arrangement formed by a switch to smaller calcite domains with diffuse/interlocking boundaries, partly resembling the interfaces seen in mollusk shell nacre. The switching process that leads to this remarkable second-layer microstructure is unknown. Our results indicate that the microstructural switching is triggered by changes in the inter- and intracrystalline organic matrix. During production of the outer microcrystalline layer in the later stages of eggshell formation, the interactions of organic matter with mineral induce an accumulation of defects that increase crystal mosaicity, instill anisotropic lattice distortions in the calcite structure, interrupt epitaxial growth, reduce crystallite size, and induce nucleation events which increase crystal misorientation. These structural changes, together with the transition between the layers and each layer having different microstructures, enhance the overall mechanical strength of the Guinea fowl eggshell. Additionally, our findings provide new insights into how biogenic calcite growth may be regulated to impart unique functional properties. STATEMENT OF SIGNIFICANCE: Avian eggshells are mineralized to protect the embryo and to provide calcium for embryonic chick skeletal development. Their thickness, structure and mechanical properties have evolved to resist external forces throughout brooding, yet ultimately allow them to crack open during chick hatching. One particular eggshell, that of the Guinea fowl, has structural features very different from other galliform birds - it is bilayered, with an inner columnar mineral structure (like in most birds), but it also has an outer layer with a complex microstructure which contributes to its superior mechanical properties. This work provides novel and new fundamental information about the processes and mechanisms that control and change crystal growth during the switch to microcrystalline domains when the second outer layer forms.
珍珠鸡蛋壳具有独特的结构排列,与大多数鸟类不同,由两种具有不同微观结构的不同层组成。这种双层结构和独特的微观结构特征赋予了它优异的机械性能。内层约占蛋壳厚度的三分之一,包含垂直排列的柱状方解石晶体单元,与大多数鸟类蛋壳相似。然而,较厚的外层具有更复杂的微观结构排列,由较小的方解石畴的切换形成,具有弥散/互锁边界,部分类似于软体动物贝壳珍珠层中的界面。导致这种显著的第二层微观结构的切换过程尚不清楚。我们的结果表明,微观结构的切换是由晶体间和晶体内有机基质的变化触发的。在蛋壳形成后期外层微晶层的生产过程中,有机质与矿物质的相互作用导致缺陷的积累,增加了晶体的多型性,在方解石结构中引入各向异性晶格畸变,中断了外延生长,减小了晶粒尺寸,并诱导了增加晶体取向偏差的成核事件。这些结构变化,以及层之间的转变和每个层具有不同的微观结构,增强了珍珠鸡蛋壳的整体机械强度。此外,我们的发现为生物矿化的方解石生长如何受到调节以赋予独特的功能特性提供了新的见解。研究意义:禽蛋壳被矿化以保护胚胎并为胚胎小鸡骨骼发育提供钙。它们的厚度、结构和机械性能已经进化到可以抵抗孵化过程中的外力,但最终可以在小鸡孵化时破裂。有一种特殊的蛋壳,珍珠鸡的蛋壳,其结构特征与其他雉鸡科鸟类非常不同——它是双层的,内层具有柱状的矿物质结构(与大多数鸟类一样),但它也有外层具有复杂的微观结构,这有助于其具有优异的机械性能。这项工作提供了关于在第二层外层形成时切换到微晶畴时控制和改变晶体生长的过程和机制的新颖且全新的基本信息。