Division of DNA Repair Research within the Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX, USA.
KU Leuven-Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), Leuven, Belgium.
Nat Commun. 2024 Mar 9;15(1):2156. doi: 10.1038/s41467-024-45978-6.
This study establishes the physiological role of Fused in Sarcoma (FUS) in mitochondrial DNA (mtDNA) repair and highlights its implications to the pathogenesis of FUS-associated neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS). Endogenous FUS interacts with and recruits mtDNA Ligase IIIα (mtLig3) to DNA damage sites within mitochondria, a relationship essential for maintaining mtDNA repair and integrity in healthy cells. Using ALS patient-derived FUS mutant cell lines, a transgenic mouse model, and human autopsy samples, we discovered that compromised FUS functionality hinders mtLig3's repair role, resulting in increased mtDNA damage and mutations. These alterations cause various manifestations of mitochondrial dysfunction, particularly under stress conditions relevant to disease pathology. Importantly, rectifying FUS mutations in patient-derived induced pluripotent cells (iPSCs) preserves mtDNA integrity. Similarly, targeted introduction of human DNA Ligase 1 restores repair mechanisms and mitochondrial activity in FUS mutant cells, suggesting a potential therapeutic approach. Our findings unveil FUS's critical role in mitochondrial health and mtDNA repair, offering valuable insights into the mechanisms underlying mitochondrial dysfunction in FUS-associated motor neuron disease.
这项研究确立了肉瘤融合蛋白(FUS)在线粒体 DNA(mtDNA)修复中的生理作用,并强调了其对 FUS 相关神经退行性疾病(如肌萎缩侧索硬化症(ALS))发病机制的影响。内源性 FUS 与线粒体中的 mtDNA 连接酶 IIIα(mtLig3)相互作用并募集到 DNA 损伤部位,这种关系对于维持健康细胞中的 mtDNA 修复和完整性至关重要。利用 ALS 患者来源的 FUS 突变细胞系、转基因小鼠模型和人类尸检样本,我们发现,功能受损的 FUS 会阻碍 mtLig3 的修复作用,导致 mtDNA 损伤和突变增加。这些改变导致各种线粒体功能障碍表现,特别是在与疾病病理相关的应激条件下。重要的是,纠正患者来源的诱导多能干细胞(iPSCs)中的 FUS 突变可保留 mtDNA 完整性。同样,靶向引入人类 DNA 连接酶 1 可恢复 FUS 突变细胞中的修复机制和线粒体活性,提示了一种潜在的治疗方法。我们的研究结果揭示了 FUS 在维持线粒体健康和 mtDNA 修复中的关键作用,为理解 FUS 相关运动神经元疾病中线粒体功能障碍的机制提供了有价值的见解。