Suppr超能文献

实验性早期 ARDS 中区域性肺灌注、血容量及其关系的变化。

Regional pulmonary perfusion, blood volume, and their relationship change in experimental early ARDS.

机构信息

Intensive Care Medicine Department, Hospital Universitario Fundación Jiménez Díaz, IIS-FJD, Madrid, Spain.

CIBER de enfermedades respiratorias CIBERES ISCIII, Madrid, Spain.

出版信息

Sci Rep. 2024 Mar 10;14(1):5832. doi: 10.1038/s41598-024-56565-6.

Abstract

Regional pulmonary perfusion (Q) has been investigated using blood volume (F) imaging as an easier-to-measure surrogate. However, it is unclear if changing pulmonary conditions could affect their relationship. We hypothesized that vascular changes in early acute respiratory distress syndrome (ARDS) affect Q and F differently. Five sheep were anesthetized and received lung protective mechanical ventilation for 20 h while endotoxin was continuously infused. Using dynamic F-FDG and NN Positron Emission Tomography (PET), regional F and Q were analysed in 30 regions of interest (ROIs) and normalized by tissue content (F and Q, respectively). After 20 h, the lung injury showed characteristics of early ARDS, including gas exchange and lung mechanics. PET images of F and Q showed substantial differences between baseline and lung injury. Lung injury caused a significant change in the F-Q relationship compared to baseline (p < 0.001). The best models at baseline and lung injury were F = 0.32 + 0.690Q and F = 1.684Q-0.538Q, respectively. Endotoxine-associated early ARDS changed the relationship between F and Q, shifting from linear to curvilinear. Effects of endotoxin exposure on the vasoactive blood flow regulation were most likely the key factor for this change limiting the quantitative accuracy of F imaging as a surrogate for regional Q.

摘要

区域肺灌注(Q)已使用血容量(F)成像作为一种更易测量的替代物进行了研究。然而,目前尚不清楚肺部条件的变化是否会影响它们之间的关系。我们假设早期急性呼吸窘迫综合征(ARDS)中的血管变化会对 Q 和 F 产生不同的影响。五只绵羊接受麻醉并接受 20 小时的肺保护性机械通气,同时持续输注内毒素。使用动态 F-FDG 和 NN 正电子发射断层扫描(PET),在 30 个感兴趣区域(ROI)中分析了局部 F 和 Q,并通过组织含量(分别为 F 和 Q)进行归一化。20 小时后,肺损伤表现出早期 ARDS 的特征,包括气体交换和肺力学。F 和 Q 的 PET 图像显示基线和肺损伤之间存在显著差异。与基线相比,肺损伤导致 F-Q 关系发生显著变化(p<0.001)。基线和肺损伤时最佳模型分别为 F=0.32+0.690Q 和 F=1.684Q-0.538Q。内毒素相关的早期 ARDS 改变了 F 和 Q 之间的关系,从线性变为曲线。内毒素暴露对血管活性血流调节的影响很可能是这种变化的关键因素,限制了 F 成像作为区域 Q 替代物的定量准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d607/10925058/febaeca1e351/41598_2024_56565_Fig1_HTML.jpg

相似文献

2
Physiological mechanism and spatial distribution of increased alveolar dead-space in early ARDS: An experimental study.
Acta Anaesthesiol Scand. 2021 Jan;65(1):100-108. doi: 10.1111/aas.13702. Epub 2020 Sep 28.
3
18F-FDG kinetics parameters depend on the mechanism of injury in early experimental acute respiratory distress syndrome.
J Nucl Med. 2014 Nov;55(11):1871-7. doi: 10.2967/jnumed.114.140962. Epub 2014 Oct 6.
4
Measurement of regional specific lung volume change using respiratory-gated PET of inhaled 13N-nitrogen.
J Nucl Med. 2010 Apr;51(4):646-53. doi: 10.2967/jnumed.109.067926. Epub 2010 Mar 17.
7
Improving pulmonary perfusion assessment by dynamic contrast-enhanced computed tomography in an experimental lung injury model.
J Appl Physiol (1985). 2023 Jun 1;134(6):1496-1507. doi: 10.1152/japplphysiol.00159.2023. Epub 2023 May 11.
8
Regional Lung Perfusion Analysis in Experimental ARDS by Electrical Impedance and Computed Tomography.
IEEE Trans Med Imaging. 2021 Jan;40(1):251-261. doi: 10.1109/TMI.2020.3025080. Epub 2020 Dec 29.
10
Imaging the pulmonary vasculature in acute respiratory distress syndrome.
Nitric Oxide. 2024 Jun 1;147:6-12. doi: 10.1016/j.niox.2024.04.004. Epub 2024 Apr 6.

引用本文的文献

1
Imaging in animal models: bridging experimental findings and human pathophysiology.
Crit Care. 2025 Jul 26;29(1):327. doi: 10.1186/s13054-025-05574-6.
2
Supervised and unsupervised learning for lung perfusion data segmentation in electrical impedance tomography.
Biomed Phys Eng Express. 2025 Jun 13;11(4). doi: 10.1088/2057-1976/ade158.
4
Effects of Lung Expansion on Global and Regional Pulmonary Blood Volume in a Sheep Model of Acute Lung Injury.
Anesthesiology. 2025 Jun 1;142(6):1071-1084. doi: 10.1097/ALN.0000000000005412. Epub 2025 Feb 12.
5
Imaging the pulmonary vasculature in acute respiratory distress syndrome.
Nitric Oxide. 2024 Jun 1;147:6-12. doi: 10.1016/j.niox.2024.04.004. Epub 2024 Apr 6.

本文引用的文献

2
Head-to-head comparison of lung perfusion with dual-energy CT and SPECT-CT.
Diagn Interv Imaging. 2020 May;101(5):299-310. doi: 10.1016/j.diii.2020.02.006. Epub 2020 Mar 12.
3
Overview of the Novel and Improved Pulmonary Ventilation-Perfusion Imaging Applications in the Era of SPECT/CT.
AJR Am J Roentgenol. 2016 Dec;207(6):1307-1315. doi: 10.2214/AJR.15.15071. Epub 2016 Oct 11.
5
Acute cor pulmonale during protective ventilation for acute respiratory distress syndrome: prevalence, predictors, and clinical impact.
Intensive Care Med. 2016 May;42(5):862-870. doi: 10.1007/s00134-015-4141-2. Epub 2015 Dec 9.
7
Acute respiratory distress syndrome: we can't miss regional lung perfusion!
BMC Anesthesiol. 2015 Mar 18;15:35. doi: 10.1186/s12871-015-0014-z. eCollection 2015.
8
Noninvasive quantitative assessment of pulmonary blood flow with 18F-FDG PET.
J Nucl Med. 2013 Sep;54(9):1653-60. doi: 10.2967/jnumed.112.116699. Epub 2013 Aug 1.
10
Modeling 18F-FDG kinetics during acute lung injury: experimental data and estimation errors.
PLoS One. 2012;7(10):e47588. doi: 10.1371/journal.pone.0047588. Epub 2012 Oct 31.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验