Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA.
J Nucl Med. 2010 Apr;51(4):646-53. doi: 10.2967/jnumed.109.067926. Epub 2010 Mar 17.
Regional specific lung volume change (sVol), defined as the regional tidal volume divided by the regional end-expiratory gas volume, is a key variable in lung mechanics and in the pathogenesis of ventilator-induced lung injury. Despite the usefulness of PET to study regional lung function, there is no established method to assess sVol with PET. We present a method to measure sVol from respiratory-gated PET images of inhaled (13)N-nitrogen ((13)NN), validate the method against regional specific ventilation (sV), and study the effect of region-of-interest (ROI) volume and orientation on the sVol-sV relationship.
Four supine sheep were mechanically ventilated (tidal volume V(T) = 8 mL/kg, respiratory rate adjusted to normocapnia) at low (n = 2, positive end-expiratory pressure = 0) and high (n = 2, positive end-expiratory pressure adjusted to achieve a plateau pressure of 30 cm H(2)O) lung volumes. Respiratory-gated PET scans were obtained after inhaled (13)NN equilibration both at baseline and after a period of mechanical ventilation. We calculated sVol from (13)NN-derived regional fractional gas content at end-inspiration (F(EI)) and end-expiration (F(EE)) using the formula sVol = (F(EI) - F(EE))/(F(EE)[1 - F(EI)]). sV was computed as the inverse of the subsequent (13)NN washout curve time constant. ROIs were defined by dividing the lung field with equally spaced coronal, sagittal, and transverse planes, perpendicular to the ventrodorsal, laterolateral, and cephalocaudal axes, respectively.
sVol-sV linear regressions for ROIs based on the ventrodorsal axis yielded the highest R(2) (range, 0.71-0.92 for mean ROI volumes from 7 to 162 mL), the cephalocaudal axis the next highest (R(2) = 0.77-0.88 for mean ROI volumes from 38 to 162 mL), and the laterolateral axis the lowest (R(2) = 0.65-0.83 for mean ROI volumes from 8 to 162 mL). ROIs based on the ventrodorsal axis yielded lower standard errors of estimates of sVol from sV than those based on the laterolateral axis or the cephalocaudal axis.
sVol can be computed with PET using the proposed method and is highly correlated with sV. Errors in sVol are smaller for larger ROIs and for orientations based on the ventrodorsal axis.
描述肺区域性体积变化(sVol),定义为区域性潮气量与区域性呼气末气体体积之比,是肺力学和呼吸机诱导性肺损伤发病机制的关键变量。尽管正电子发射断层扫描(PET)在研究区域性肺功能方面具有实用性,但目前还没有建立评估 sVol 的方法。我们提出了一种从吸入的(13)氮((13)NN)呼吸门控 PET 图像中测量 sVol 的方法,验证了该方法与区域性特定通气(sV)的相关性,并研究了感兴趣区(ROI)体积和方向对 sVol-sV 关系的影响。
在低(n=2,呼气末正压=0)和高(n=2,呼气末正压调节至达到 30cmH2O 平台压)肺容积下,4 只仰卧绵羊接受机械通气(潮气量 V(T)=8ml/kg,呼吸频率调节至正常碳酸血症)。在吸入(13)NN 平衡后,在基线和机械通气一段时间后进行呼吸门控 PET 扫描。我们使用公式 sVol =(F(EI)-F(EE))/(F(EE)[1-F(EI)])从(13)NN 衍生的区域性吸气末(F(EI))和呼气末(F(EE))的局部气体含量计算 sVol。sV 被计算为随后(13)NN 洗脱曲线时间常数的倒数。ROI 是通过将肺区域垂直于背腹、前后和头尾轴的等距冠状、矢状和横切面定义的。
基于背腹轴的 ROI 的 sVol-sV 线性回归得到了最高的 R(2)(范围为 7-162ml 平均 ROI 体积的 0.71-0.92),头侧尾侧轴次之(平均 ROI 体积为 38-162ml 的 R(2)为 0.77-0.88),而外侧轴最低(平均 ROI 体积为 8-162ml 的 R(2)为 0.65-0.83)。基于背腹轴的 ROI 产生的 sVol 与 sV 的估计标准误差小于基于外侧轴或头侧尾侧轴的 ROI。
可以使用提出的方法使用 PET 计算 sVol,并且与 sV 高度相关。对于较大的 ROI 和基于背腹轴的方向,sVol 的误差较小。