Suppr超能文献

用于径向动态磁共振成像重建的数据高效贝叶斯学习

Data-efficient Bayesian learning for radial dynamic MR reconstruction.

作者信息

Brahma Sherine, Kolbitsch Christoph, Martin Joerg, Schaeffter Tobias, Kofler Andreas

机构信息

Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.

Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany.

出版信息

Med Phys. 2023 Nov;50(11):6955-6977. doi: 10.1002/mp.16543. Epub 2023 Jun 27.

Abstract

BACKGROUND

Cardiac MRI has become the gold-standard imaging technique for assessing cardiovascular morphology and function. In spite of this, its slow data acquisition process presents imaging challenges due to the motion from heartbeats, respiration, and blood flow. In recent studies, deep learning (DL) algorithms have shown promising results for the task of image reconstruction. However, there have been instances where they have introduced artifacts that may be misinterpreted as pathologies or may obscure the detection of pathologies. Therefore, it is important to obtain a metric, such as the uncertainty of the network output, that identifies such artifacts. However, this can be quite challenging for large-scale image reconstruction problems such as dynamic multi-coil non-Cartesian MRI.

PURPOSE

To efficiently quantify uncertainties of a physics-informed DL-based image reconstruction method for a large-scale accelerated 2D multi-coil dynamic radial MRI reconstruction problem, and demonstrate the benefits of physics-informed DL over model-agnostic DL in reducing uncertainties while at the same time improving image quality.

METHODS

We extended a recently proposed physics-informed 2D U-Net that learns spatio-temporal slices (named XT-YT U-Net), and employed it for the task of uncertainty quantification (UQ) by using Monte Carlo dropout and a Gaussian negative log-likelihood loss function. Our data comprised 2D dynamic MR images acquired with a radial balanced steady-state free precession sequence. The XT-YT U-Net, which allows for training with a limited amount of data, was trained and validated on a dataset of 15 healthy volunteers, and further tested on data from four patients. An extensive comparison between physics-informed and model-agnostic neural networks (NNs) concerning the obtained image quality and uncertainty estimates was performed. Further, we employed calibration plots to assess the quality of the UQ.

RESULTS

The inclusion of the MR-physics model of data acquisition as a building block in the NN architecture led to higher image quality (NRMSE: , PSNR: , and SSIM: ), lower uncertainties ( ), and, based on the calibration plots, an improved UQ compared to its model-agnostic counterpart. Furthermore, the UQ information can be used to differentiate between anatomical structures (e.g., coronary arteries, ventricle boundaries) and artifacts.

CONCLUSIONS

Using an XT-YT U-Net, we were able to quantify uncertainties of a physics-informed NN for a high-dimensional and computationally demanding 2D multi-coil dynamic MR imaging problem. In addition to improving the image quality, embedding the acquisition model in the network architecture decreased the reconstruction uncertainties as well as quantitatively improved the UQ. The UQ provides additional information to assess the performance of different network approaches.

摘要

背景

心脏磁共振成像已成为评估心血管形态和功能的金标准成像技术。尽管如此,由于心跳、呼吸和血流引起的运动,其缓慢的数据采集过程带来了成像挑战。在最近的研究中,深度学习(DL)算法在图像重建任务中显示出了有前景的结果。然而,在某些情况下,它们引入了可能被误解为病变或可能掩盖病变检测的伪影。因此,获得一种能够识别此类伪影的指标,如网络输出的不确定性,非常重要。然而,对于动态多线圈非笛卡尔磁共振成像等大规模图像重建问题,这可能极具挑战性。

目的

为大规模加速二维多线圈动态径向磁共振成像重建问题,高效量化基于物理信息的深度学习图像重建方法的不确定性,并证明基于物理信息的深度学习在减少不确定性的同时提高图像质量方面优于与模型无关的深度学习。

方法

我们扩展了最近提出的学习时空切片的基于物理信息的二维U-Net(命名为XT-YT U-Net),并通过使用蒙特卡洛随机失活和高斯负对数似然损失函数将其用于不确定性量化(UQ)任务。我们的数据包括用径向平衡稳态自由进动序列采集的二维动态磁共振图像。允许用有限数量的数据进行训练的XT-YT U-Net在15名健康志愿者的数据集上进行训练和验证,并在来自4名患者的数据上进一步测试。对基于物理信息的神经网络和与模型无关的神经网络在获得的图像质量和不确定性估计方面进行了广泛比较。此外,我们使用校准图来评估UQ的质量。

结果

在神经网络架构中纳入数据采集的磁共振物理模型,带来了更高的图像质量(归一化均方根误差: ,峰值信噪比: ,结构相似性指数: )、更低的不确定性( ),并且根据校准图,与与模型无关的对应方法相比,UQ得到了改善。此外,UQ信息可用于区分解剖结构(如冠状动脉、心室边界)和伪影。

结论

使用XT-YT U-Net,我们能够量化基于物理信息的神经网络对于高维且计算要求高的二维多线圈动态磁共振成像问题的不确定性。除了提高图像质量外,将采集模型嵌入网络架构还降低了重建不确定性,并在定量上改善了UQ。UQ为评估不同网络方法的性能提供了额外信息。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验