Suppr超能文献

利用加速度计和镇痛数据的机器学习对危重症患者进行日间疼痛分类

Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data.

作者信息

Sena Jessica, Bandyopadhyay Sabyasachi, Mostafiz Mohammad Tahsin, Davidson Andrea, Guan Ziyuan, Barreto Jesimon, Ozrazgat-Baslanti Tezcan, Tighe Patrick, Bihorac Azra, Schwartz William Robson, Rashidi Parisa

机构信息

Federal University of Minas Gerais/Department of Computer Science, Belo Horizonte, Brazil.

University of Florida/J. Crayton Pruitt Family Department of Biomedical Engineering, Gainesville, USA.

出版信息

IEEE Int Conf Bioinform Biomed Workshops. 2023 Dec;2023:2207-2212. doi: 10.1109/bibm58861.2023.10385764. Epub 2024 Jan 18.

Abstract

Quantifying pain in patients admitted to intensive care units (ICUs) is challenging due to the increased prevalence of communication barriers in this patient population. Previous research has posited a positive correlation between pain and physical activity in critically ill patients. In this study, we advance this hypothesis by building machine learning classifiers to examine the ability of accelerometer data collected from daily wearables to predict self-reported pain levels experienced by patients in the ICU. We trained multiple Machine Learning (ML) models, including Logistic Regression, CatBoost, and XG-Boost, on statistical features extracted from the accelerometer data combined with previous pain measurements and patient demographics. Following previous studies that showed a change in pain sensitivity in ICU patients at night, we performed the task of pain classification separately for daytime and nighttime pain reports. In the pain versus no-pain classification setting, logistic regression gave the best classifier in daytime (AUC: 0.72, F1-score: 0.72), and CatBoost gave the best classifier at nighttime (AUC: 0.82, F1-score: 0.82). Performance of logistic regression dropped to 0.61 AUC, 0.62 F1-score (mild vs. moderate pain, nighttime), and CatBoost's performance was similarly affected with 0.61 AUC, 0.60 F1-score (moderate vs. severe pain, daytime). The inclusion of analgesic information benefited the classification between moderate and severe pain. SHAP analysis was conducted to find the most significant features in each setting. It assigned the highest importance to accelerometer-related features on all evaluated settings but also showed the contribution of the other features such as age and medications in specific contexts. In conclusion, accelerometer data combined with patient demographics and previous pain measurements can be used to screen painful from painless episodes in the ICU and can be combined with analgesic information to provide moderate classification between painful episodes of different severities.

摘要

由于重症监护病房(ICU)患者中沟通障碍的患病率增加,对入住该病房的患者进行疼痛量化具有挑战性。先前的研究认为重症患者的疼痛与身体活动之间存在正相关。在本研究中,我们通过构建机器学习分类器来推进这一假设,以检验从日常可穿戴设备收集的加速度计数据预测ICU患者自我报告疼痛水平的能力。我们在从加速度计数据中提取的统计特征与先前的疼痛测量数据及患者人口统计学信息相结合的基础上,训练了多个机器学习(ML)模型,包括逻辑回归、CatBoost和XG - Boost。继先前显示ICU患者夜间疼痛敏感性变化的研究之后,我们分别针对白天和夜间的疼痛报告执行疼痛分类任务。在疼痛与无疼痛分类设置中,逻辑回归在白天给出了最佳分类器(AUC:0.72,F1分数:0.72),而CatBoost在夜间给出了最佳分类器(AUC:0.82,F1分数:0.82)。逻辑回归的性能在夜间降至AUC 0.61,F1分数0.62(轻度与中度疼痛),CatBoost的性能也受到类似影响,在白天为AUC 0.61,F1分数0.60(中度与重度疼痛)。纳入镇痛信息有利于中度和重度疼痛之间的分类。进行SHAP分析以找出每种设置中最显著的特征。它在所有评估设置中赋予与加速度计相关的特征最高重要性,但也显示了其他特征(如年龄和药物)在特定情况下的贡献。总之,加速度计数据与患者人口统计学信息及先前的疼痛测量数据相结合,可用于在ICU中筛选无痛和疼痛发作,并且可与镇痛信息相结合,以对不同严重程度的疼痛发作进行中度分类。

相似文献

1
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data.
IEEE Int Conf Bioinform Biomed Workshops. 2023 Dec;2023:2207-2212. doi: 10.1109/bibm58861.2023.10385764. Epub 2024 Jan 18.
6
COPDVD: Automated classification of chronic obstructive pulmonary disease on a new collected and evaluated voice dataset.
Artif Intell Med. 2024 Oct;156:102953. doi: 10.1016/j.artmed.2024.102953. Epub 2024 Aug 15.
7
Machine learning for prediction of in-hospital mortality in lung cancer patients admitted to intensive care unit.
PLoS One. 2023 Jan 26;18(1):e0280606. doi: 10.1371/journal.pone.0280606. eCollection 2023.
8
Explainable machine learning and online calculators to predict heart failure mortality in intensive care units.
ESC Heart Fail. 2025 Feb;12(1):353-368. doi: 10.1002/ehf2.15062. Epub 2024 Sep 19.
9
Prediction of Mortality and Major Adverse Kidney Events in Critically Ill Patients With Acute Kidney Injury.
Am J Kidney Dis. 2023 Jan;81(1):36-47. doi: 10.1053/j.ajkd.2022.06.004. Epub 2022 Jul 19.
10
A Machine Learning Approach for Walking Classification in Elderly People with Gait Disorders.
Sensors (Basel). 2023 Jan 6;23(2):679. doi: 10.3390/s23020679.

引用本文的文献

1
Wearable sensors in patient acuity assessment in critical care.
Front Neurol. 2024 May 9;15:1386728. doi: 10.3389/fneur.2024.1386728. eCollection 2024.

本文引用的文献

1
Learning Pain from Action Unit Combinations: A Weakly Supervised Approach via Multiple Instance Learning.
IEEE Trans Affect Comput. 2022 Jan-Mar;13(1):135-146. doi: 10.1109/taffc.2019.2949314. Epub 2019 Oct 30.
2
Pain Action Unit Detection in Critically Ill Patients.
Proc COMPSAC. 2021 Jul;2021:645-651. doi: 10.1109/compsac51774.2021.00094. Epub 2021 Sep 9.
3
Pain and Physical Activity Association in Critically Ill Patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:5696-5699. doi: 10.1109/EMBC44109.2020.9176227.
4
Joint Distribution and Transitions of Pain and Activity in Critically Ill Patients.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:4534-4538. doi: 10.1109/EMBC44109.2020.9176453.
5
Vital signs: Valid indicators to assess pain in intensive care unit patients? An observational, descriptive study.
Nurs Health Sci. 2018 Dec;20(4):502-508. doi: 10.1111/nhs.12543. Epub 2018 Jul 20.
8
The Impact of Pain Assessment on Critically Ill Patients' Outcomes: A Systematic Review.
Biomed Res Int. 2015;2015:503830. doi: 10.1155/2015/503830. Epub 2015 Oct 19.
9
Use of Accelerometry to Monitor Physical Activity in Critically Ill Subjects: A Systematic Review.
Respir Care. 2015 Sep;60(9):1330-6. doi: 10.4187/respcare.03677. Epub 2015 Apr 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验