Suppr超能文献

可穿戴传感器在重症监护患者病情严重程度评估中的应用

Wearable sensors in patient acuity assessment in critical care.

作者信息

Sena Jessica, Mostafiz Mohammad Tahsin, Zhang Jiaqing, Davidson Andrea E, Bandyopadhyay Sabyasachi, Nerella Subhash, Ren Yuanfang, Ozrazgat-Baslanti Tezcan, Shickel Benjamin, Loftus Tyler, Schwartz William Robson, Bihorac Azra, Rashidi Parisa

机构信息

Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, Brazil.

Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States.

出版信息

Front Neurol. 2024 May 9;15:1386728. doi: 10.3389/fneur.2024.1386728. eCollection 2024.

Abstract

Acuity assessments are vital for timely interventions and fair resource allocation in critical care settings. Conventional acuity scoring systems heavily depend on subjective patient assessments, leaving room for implicit bias and errors. These assessments are often manual, time-consuming, intermittent, and challenging to interpret accurately, especially for healthcare providers. This risk of bias and error is likely most pronounced in time-constrained and high-stakes environments, such as critical care settings. Furthermore, such scores do not incorporate other information, such as patients' mobility level, which can indicate recovery or deterioration in the intensive care unit (ICU), especially at a granular level. We hypothesized that wearable sensor data could assist in assessing patient acuity granularly, especially in conjunction with clinical data from electronic health records (EHR). In this prospective study, we evaluated the impact of integrating mobility data collected from wrist-worn accelerometers with clinical data obtained from EHR for estimating acuity. Accelerometry data were collected from 87 patients wearing accelerometers on their wrists in an academic hospital setting. The data was evaluated using five deep neural network models: VGG, ResNet, MobileNet, SqueezeNet, and a custom Transformer network. These models outperformed a rule-based clinical score (Sequential Organ Failure Assessment, SOFA) used as a baseline when predicting acuity state (for ground truth we labeled as unstable patients if they needed life-supporting therapies, and as stable otherwise), particularly regarding the precision, sensitivity, and F1 score. The results demonstrate that integrating accelerometer data with demographics and clinical variables improves predictive performance compared to traditional scoring systems in healthcare. Deep learning models consistently outperformed the SOFA score baseline across various scenarios, showing notable enhancements in metrics such as the area under the receiver operating characteristic (ROC) Curve (AUC), precision, sensitivity, specificity, and F1 score. The most comprehensive scenario, leveraging accelerometer, demographics, and clinical data, achieved the highest AUC of 0.73, compared to 0.53 when using SOFA score as the baseline, with significant improvements in precision (0.80 vs. 0.23), specificity (0.79 vs. 0.73), and F1 score (0.77 vs. 0.66). This study demonstrates a novel approach beyond the simplistic differentiation between stable and unstable conditions. By incorporating mobility and comprehensive patient information, we distinguish between these states in critically ill patients and capture essential nuances in physiology and functional status. Unlike rudimentary definitions, such as equating low blood pressure with instability, our methodology delves deeper, offering a more holistic understanding and potentially valuable insights for acuity assessment.

摘要

在重症监护环境中,敏锐度评估对于及时干预和合理分配资源至关重要。传统的敏锐度评分系统严重依赖主观的患者评估,这就为隐性偏差和错误留下了空间。这些评估通常是人工的、耗时的、间歇性的,并且难以准确解读,尤其是对于医疗服务提供者而言。在诸如重症监护环境等时间紧迫且风险高的环境中,这种偏差和错误的风险可能最为明显。此外,此类评分并未纳入其他信息,例如患者的活动水平,而这可以表明重症监护病房(ICU)中的恢复或恶化情况,尤其是在细粒度层面。我们假设可穿戴传感器数据可以帮助细致地评估患者敏锐度,特别是与电子健康记录(EHR)中的临床数据相结合时。在这项前瞻性研究中,我们评估了将从腕部佩戴的加速度计收集的活动数据与从EHR获得的临床数据相结合用于估计敏锐度的影响。加速度计数据是在一家学术医院环境中从87名手腕佩戴加速度计的患者身上收集的。使用五个深度神经网络模型对数据进行了评估:VGG、ResNet、MobileNet、SqueezeNet和一个定制的Transformer网络。在预测敏锐度状态时(对于地面真值,如果患者需要生命支持疗法,我们将其标记为不稳定患者,否则标记为稳定患者),这些模型优于用作基线的基于规则的临床评分(序贯器官衰竭评估,SOFA),特别是在精度、灵敏度和F1分数方面。结果表明,与医疗保健中的传统评分系统相比,将加速度计数据与人口统计学和临床变量相结合可提高预测性能。深度学习模型在各种情况下始终优于SOFA评分基线,在诸如受试者操作特征(ROC)曲线下面积(AUC)、精度、灵敏度、特异性和F1分数等指标上有显著提高。最全面的情况是利用加速度计、人口统计学和临床数据,AUC达到了最高的0.73,而以SOFA评分为基线时为0.53,精度(0.80对0.23)、特异性(0.79对0.73)和F1分数(0.77对0.66)都有显著提高。这项研究展示了一种超越稳定和不稳定状态简单区分的新方法。通过纳入活动和全面的患者信息,我们区分了重症患者的这些状态,并捕捉了生理和功能状态中的关键细微差别。与将低血压等同于不稳定等基本定义不同,我们的方法更深入,为敏锐度评估提供了更全面的理解和潜在的有价值见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f5a3/11112699/b3f939fa0cd0/fneur-15-1386728-g001.jpg

相似文献

1
Wearable sensors in patient acuity assessment in critical care.
Front Neurol. 2024 May 9;15:1386728. doi: 10.3389/fneur.2024.1386728. eCollection 2024.
2
8
[Comparison of four early warning scores in predicting the prognosis of critically ill patients in secondary hospitals].
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2023 Oct;35(10):1093-1098. doi: 10.3760/cma.j.cn121430-20230614-00441.
9
Prediction of mortality events of patients with acute heart failure in intensive care unit based on deep neural network.
Comput Methods Programs Biomed. 2024 Nov;256:108403. doi: 10.1016/j.cmpb.2024.108403. Epub 2024 Aug 30.
10
Machine learning algorithms for predicting COVID-19 mortality in Ethiopia.
BMC Public Health. 2024 Jun 28;24(1):1728. doi: 10.1186/s12889-024-19196-0.

引用本文的文献

本文引用的文献

1
Diurnal Pain Classification in Critically Ill Patients using Machine Learning on Accelerometry and Analgesic Data.
IEEE Int Conf Bioinform Biomed Workshops. 2023 Dec;2023:2207-2212. doi: 10.1109/bibm58861.2023.10385764. Epub 2024 Jan 18.
3
Wearable Sensor-Based Human Activity Recognition with Transformer Model.
Sensors (Basel). 2022 Mar 1;22(5):1911. doi: 10.3390/s22051911.
4
Deep Multi-Modal Transfer Learning for Augmented Patient Acuity Assessment in the Intelligent ICU.
Front Digit Health. 2021 Feb;3. doi: 10.3389/fdgth.2021.640685. Epub 2021 Feb 22.
5
Unsupervised machine learning for the discovery of latent disease clusters and patient subgroups using electronic health records.
J Biomed Inform. 2020 Feb;102:103364. doi: 10.1016/j.jbi.2019.103364. Epub 2019 Dec 28.
6
Intelligent ICU for Autonomous Patient Monitoring Using Pervasive Sensing and Deep Learning.
Sci Rep. 2019 May 29;9(1):8020. doi: 10.1038/s41598-019-44004-w.
9
Health Informatics via Machine Learning for the Clinical Management of Patients.
Yearb Med Inform. 2015 Aug 13;10(1):38-43. doi: 10.15265/IY-2015-014.
10
How to obtain the P value from a confidence interval.
BMJ. 2011;343:d2304. doi: 10.1136/bmj.d2304.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验