Kreeger Lauren J, Honnuraiah Suraj, Maeker Sydney, Shea Siobhan, Fishell Gord, Goodrich Lisa V
Harvard Medical School, Department of Neurobiology, Boston, MA 02115, USA.
Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
bioRxiv. 2024 Nov 21:2024.02.29.582808. doi: 10.1101/2024.02.29.582808.
Animals navigate the auditory world by recognizing complex sounds, from the rustle of a predator to the call of a potential mate. This ability depends in part on the octopus cells of the auditory brainstem, which respond to multiple frequencies that change over time, as occurs in natural stimuli. Unlike the average neuron, which integrates inputs over time on the order of tens of milliseconds, octopus cells must detect momentary coincidence of excitatory inputs from the cochlea during an ongoing sound on both the millisecond and submillisecond time scale. Here, we show that octopus cells receive inhibitory inputs on their dendrites that enhance opportunities for coincidence detection in the cell body, thereby allowing for responses both to rapid onsets at the beginning of a sound and to frequency modulations during the sound. This mechanism is crucial for the fundamental process of integrating the synchronized frequencies of natural auditory signals over time.
动物通过识别复杂声音在听觉世界中导航,从捕食者的沙沙声到潜在配偶的叫声。这种能力部分取决于听觉脑干的章鱼细胞,这些细胞对随时间变化的多个频率做出反应,就像在自然刺激中发生的那样。与平均神经元不同,平均神经元在几十毫秒的时间尺度上对输入进行整合,而章鱼细胞必须在正在进行的声音的毫秒和亚毫秒时间尺度上检测来自耳蜗的兴奋性输入的瞬间巧合。在这里,我们表明章鱼细胞在其树突上接收抑制性输入,这增加了在细胞体中进行巧合检测的机会,从而允许对声音开始时的快速起始以及声音期间的频率调制做出反应。这种机制对于随着时间整合自然听觉信号的同步频率这一基本过程至关重要。