Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, Madison, Wisconsin 53706, USA.
J Neurosci. 2012 Jul 4;32(27):9301-11. doi: 10.1523/JNEUROSCI.0272-12.2012.
Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecond temporal precision. The dendrites of octopus cells lie perpendicular to the tonotopically organized array of auditory nerve fibers, placing the earliest arriving inputs most distally and the latest arriving closest to the soma. Here, we test the hypothesis that the topographic arrangement of synaptic inputs on dendrites of octopus cells allows octopus cells to compensate the traveling wave delay. We show that in mice the full cochlear traveling wave delay is 1.6 ms. Because the dendrites of each octopus cell spread across approximately one-third of the tonotopic axis, a click evokes a soma-directed sweep of synaptic input lasting 0.5 ms in individual octopus cells. Morphologically and biophysically realistic, computational models of octopus cells show that soma-directed sweeps with durations matching in vivo measurements result in the largest and sharpest somatic EPSPs. A low input resistance and activation of a low-voltage-activated potassium conductance that are characteristic of octopus cells are important determinants of sweep sensitivity. We conclude that octopus cells have dendritic morphologies and biophysics tailored to accomplish the precise encoding of broadband transient sounds.
宽带瞬态声音,如 clicks 和 consonants,会在耳蜗中引发行波。这种波会引发听觉神经纤维的放电,这些纤维对高频的调谐比低频的调谐早几个毫秒。尽管存在这种明显的行波延迟,但脑干中的章鱼细胞仍会接收宽带输入,并以亚毫秒级的时间精度对 clicks 做出反应。章鱼细胞的树突垂直于听觉神经纤维的音调组织排列,最早到达的输入位于最远端,最晚到达的输入靠近胞体。在这里,我们检验了这样一个假设,即章鱼细胞树突上的突触输入的拓扑排列允许章鱼细胞补偿行波延迟。我们发现,在小鼠中,整个耳蜗的行波延迟为 1.6ms。由于每个章鱼细胞的树突横跨大约三分之一的音调轴,一个 clicks 会在单个章鱼细胞中引发持续 0.5ms 的朝向胞体的突触输入扫掠。形态学和生物物理学上真实的章鱼细胞计算模型表明,与体内测量结果匹配的持续时间为 0.5ms 的朝向胞体的扫掠会导致最大和最尖锐的胞体 EPSP。章鱼细胞的特征是低输入电阻和激活低电压激活的钾电导,这是扫掠敏感性的重要决定因素。我们得出结论,章鱼细胞具有适合精确编码宽带瞬态声音的树突形态和生物物理学特性。