Suppr超能文献

小清蛋白中间神经元损伤导致癫痫性脑病中的突触传递缺陷和癫痫发作。

Parvalbumin Interneuron Impairment Leads to Synaptic Transmission Deficits and Seizures in Epileptic Encephalopathy.

作者信息

Miralles Raquel M, Boscia Alexis R, Kittur Shrinidhi, Vundela Shreya R, Wengert Eric R, Patel Manoj K

出版信息

bioRxiv. 2024 Mar 7:2024.02.09.579511. doi: 10.1101/2024.02.09.579511.

Abstract

epileptic encephalopathy (EE) is a severe epilepsy syndrome resulting from mutations in the voltage-gated sodium channel Na 1.6, encoded by the gene . Na 1.6 is expressed in both excitatory and inhibitory neurons, yet previous studies have primarily focused on the impact mutations have on excitatory neuron function, with limited studies on the importance of inhibitory interneurons to seizure onset and progression. Inhibitory interneurons are critical in balancing network excitability and are known to contribute to the pathophysiology of other epilepsies. Parvalbumin (PV) interneurons are the most prominent inhibitory neuron subtype in the brain, making up about 40% of inhibitory interneurons. Notably, PV interneurons express high levels of Na 1.6. To assess the role of PV interneurons within EE, we used two mouse models harboring patient-derived gain-of-function mutations, , where the mutation N1768D is expressed globally, and -PV, where the mutation R1872W is selectively expressed in PV interneurons. Expression of the R1872W mutation selectively in PV interneurons led to the development of spontaneous seizures in -PV mice and seizure-induced death, decreasing survival compared to wild-type. Electrophysiology studies showed that PV interneurons in and -PV mice were susceptible to depolarization block, a state of action potential failure. and -PV interneurons also exhibited increased persistent sodium current, a hallmark of gain-of-function mutations that contributes to depolarization block. Evaluation of synaptic connections between PV interneurons and pyramidal cells showed an increase in synaptic transmission failure at high frequencies (80-120Hz) as well as an increase in synaptic latency in and -PV interneurons. These data indicate a distinct impairment of synaptic transmission in EE, potentially decreasing overall cortical network inhibition. Together, our novel findings indicate that failure of PV interneuron spiking via depolarization block along with frequency-dependent inhibitory synaptic impairment likely elicits an overall reduction in the inhibitory drive in EE, leading to unchecked excitation and ultimately resulting in seizures and seizure-induced death.

摘要

癫痫性脑病(EE)是一种严重的癫痫综合征,由基因编码的电压门控钠通道Na 1.6突变引起。Na 1.6在兴奋性和抑制性神经元中均有表达,但以往的研究主要集中在突变对兴奋性神经元功能的影响,而对抑制性中间神经元在癫痫发作起始和进展中的重要性研究有限。抑制性中间神经元在平衡网络兴奋性方面至关重要,并且已知其参与其他癫痫的病理生理过程。小白蛋白(PV)中间神经元是大脑中最突出的抑制性神经元亚型,约占抑制性中间神经元的40%。值得注意的是,PV中间神经元表达高水平的Na 1.6。为了评估PV中间神经元在EE中的作用,我们使用了两种携带患者来源的功能获得性突变的小鼠模型,即,其中N1768D突变在全身表达,以及-PV,其中R1872W突变在PV中间神经元中选择性表达。R1872W突变在PV中间神经元中的选择性表达导致-PV小鼠出现自发性癫痫发作和癫痫发作诱导的死亡,与野生型相比存活率降低。电生理学研究表明,和-PV小鼠中的PV中间神经元易发生去极化阻滞,即动作电位衰竭状态。和-PV中间神经元还表现出持续钠电流增加,这是功能获得性突变的一个标志,有助于去极化阻滞。对PV中间神经元与锥体细胞之间突触连接的评估显示,在高频(80-120Hz)时突触传递失败增加,以及和-PV中间神经元的突触潜伏期增加。这些数据表明EE中突触传递存在明显损害,可能会降低整体皮质网络抑制。总之,我们的新发现表明,PV中间神经元通过去极化阻滞而发生的动作电位发放失败以及频率依赖性抑制性突触损害可能导致EE中抑制性驱动的总体降低,导致不受控制的兴奋,最终导致癫痫发作和癫痫发作诱导的死亡。

相似文献

8
Dravet Syndrome: A Developmental and Epileptic Encephalopathy.德拉韦综合征:一种发育性癫痫性脑病。
Epilepsy Curr. 2019 Jan;19(1):51-53. doi: 10.1177/1535759718822038. Epub 2019 Jan 30.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验