Department of Anesthesiology, University of Virginia Health System, Charlottesville, Virginia, 22908.
Neuroscience Graduate Program, University of Virginia Health System, Charlottesville, Virginia, 22908.
J Neurosci. 2021 Nov 3;41(44):9257-9273. doi: 10.1523/JNEUROSCI.0718-21.2021. Epub 2021 Sep 20.
epileptic encephalopathy is a devastating epilepsy syndrome caused by mutant , which encodes the voltage-gated sodium channel Na1.6. To date, it is unclear if and how inhibitory interneurons, which express Na1.6, influence disease pathology. Using both sexes of a transgenic mouse model of epileptic encephalopathy, we found that selective expression of the R1872W mutation in somatostatin (SST) interneurons was sufficient to convey susceptibility to audiogenic seizures. Patch-clamp electrophysiology experiments revealed that SST interneurons from mutant mice were hyperexcitable but hypersensitive to action potential failure via depolarization block under normal and seizure-like conditions. Remarkably, GqDREADD-mediated activation of WT SST interneurons resulted in prolonged electrographic seizures and was accompanied by SST hyperexcitability and depolarization block. Aberrantly large persistent sodium currents, a hallmark of mutations, were observed and were found to contribute directly to aberrant SST physiology in computational modeling and pharmacological experiments. These novel findings demonstrate a critical and previously unidentified contribution of SST interneurons to seizure generation not only in epileptic encephalopathy, but epilepsy in general. epileptic encephalopathy is a devastating neurological disorder that results from mutations in the sodium channel isoform Na1.6. Inhibitory neurons express Na1.6, yet their contribution to seizure generation in epileptic encephalopathy has not been determined. We show that mice expressing a human-derived variant (R1872W) selectively in somatostatin (SST) interneurons have audiogenic seizures. Physiological recordings from SST interneurons show that mutations lead to an elevated persistent sodium current which drives initial hyperexcitability, followed by premature action potential failure because of depolarization block. Furthermore, chemogenetic activation of WT SST interneurons leads to audiogenic seizure activity. These findings provide new insight into the importance of SST inhibitory interneurons in seizure initiation, not only in epileptic encephalopathy, but for epilepsy broadly.
癫痫性脑病是一种由突变引起的破坏性癫痫综合征,该突变编码电压门控钠通道 Na1.6。迄今为止,尚不清楚表达 Na1.6 的抑制性中间神经元是否以及如何影响疾病病理。我们使用癫痫性脑病的转基因小鼠模型的雌雄个体,发现选择性在生长抑素 (SST) 中间神经元中表达 R1872W 突变足以赋予听觉性癫痫发作易感性。膜片钳电生理学实验表明,在正常和类似癫痫发作的条件下,突变小鼠的 SST 中间神经元表现出过度兴奋,但对去极化阻断引起的动作电位衰竭敏感。值得注意的是,GqDREADD 介导的 WT SST 中间神经元的激活导致电发作延长,并伴有 SST 过度兴奋和去极化阻断。异常大的持续钠电流是突变的标志,在计算建模和药理学实验中观察到,并被发现直接导致 SST 生理学异常。这些新发现表明 SST 中间神经元对癫痫发作的产生有重要的、以前未被识别的贡献,不仅在癫痫性脑病中,而且在一般癫痫中。癫痫性脑病是一种破坏性的神经障碍,由钠通道同工型 Na1.6 的突变引起。抑制性神经元表达 Na1.6,但它们在癫痫性脑病中对癫痫发作的产生的贡献尚未确定。我们表明,选择性在生长抑素 (SST) 中间神经元中表达人类衍生变体 (R1872W) 的小鼠患有听觉性癫痫发作。来自 SST 中间神经元的生理记录显示,突变导致升高的持续钠电流,从而驱动初始过度兴奋,随后由于去极化阻断而导致动作电位过早衰竭。此外,WT SST 中间神经元的化学遗传激活导致听觉性癫痫发作活动。这些发现为 SST 抑制性中间神经元在癫痫发作起始中的重要性提供了新的见解,不仅在癫痫性脑病中,而且在广泛的癫痫中。