Cruz-Navarrete F Aaron, Griffin Wezley C, Chan Yuk-Cheung, Martin Maxwell I, Alejo Jose L, Natchiar S Kundhavai, Knudson Isaac J, Altman Roger B, Schepartz Alanna, Miller Scott J, Blanchard Scott C
Department of Structural Biology, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
Department of Chemical Biology & Therapeutics, St Jude Children's Research Hospital, Memphis, Tennessee, USA.
bioRxiv. 2024 Feb 27:2024.02.24.581891. doi: 10.1101/2024.02.24.581891.
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs. Here we examine the impact of both monomer backbone and side chain on formation and ribosome-utilization of the central protein synthesis substate: the ternary complex of native, aminoacylated transfer RNA (aa-tRNA), thermally unstable elongation factor (EF-Tu), and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer (FRET) measurements, we reveal the dramatic effect of monomer backbone on ternary complex formation and protein synthesis. Both the (R) and (S)-β isomers of Phe disrupt ternary complex formation to levels below detection limits, while (R)- and (S)-β-Phe reduce ternary complex stability by approximately one order of magnitude. Consistent with these findings, (R)- and (S)-β-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β-Phe stereoisomers were utilized inefficiently. The reduced affinities of both species for EF-Tu ostensibly bypassed the proofreading stage of mRNA decoding. (R)-β-Phe but not (S)-β-Phe also exhibited order of magnitude defects in the rate of substrate translocation after mRNA decoding, in line with defects in peptide bond formation that have been observed for D-α-Phe. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include consideration of the efficiency and stability of ternary complex formation.
包含非天然氨基酸(nnAAs)的蛋白质的模板合成有望极大地扩展生物治疗剂和材料可用的化学空间。现有技术限制了可掺入给定蛋白质中的nnAAs的种类和数量。解决这些瓶颈需要更深入地了解信使核糖核酸(mRNA)模板化蛋白质合成的机制,以及该机制如何受到nnAAs的干扰。在这里,我们研究了单体主链和侧链对中心蛋白质合成亚状态(即天然氨酰化转移核糖核酸(aa-tRNA)、热不稳定延伸因子(EF-Tu)和鸟苷三磷酸(GTP)的三元复合物)的形成和核糖体利用的影响。通过进行整体和单分子荧光共振能量转移(FRET)测量,我们揭示了单体主链对三元复合物形成和蛋白质合成的显著影响。苯丙氨酸的(R)和(S)-β异构体都将三元复合物的形成破坏到检测限以下的水平,而(R)-和(S)-β-苯丙氨酸使三元复合物的稳定性降低了大约一个数量级。与这些发现一致,核糖体未利用(R)-和(S)-β-苯丙氨酸负载的tRNA,而(R)-和(S)-β-苯丙氨酸立体异构体的利用效率低下。这两种物质对EF-Tu的亲和力降低,表面上绕过了mRNA解码的校对阶段。(R)-β-苯丙氨酸而非(S)-β-苯丙氨酸在mRNA解码后的底物转位速率上也表现出数量级的缺陷,这与D-α-苯丙氨酸观察到的肽键形成缺陷一致。我们从这些发现中得出结论,非天然氨基酸可在多个方面对翻译机制产生负面影响,并且改进的瓶颈必须包括考虑三元复合物形成的效率和稳定性。