MindScope Program, Allen Institute, Seattle, WA, USA.
Nat Methods. 2021 Nov;18(11):1401-1408. doi: 10.1038/s41592-021-01285-2. Epub 2021 Oct 14.
Progress in many scientific disciplines is hindered by the presence of independent noise. Technologies for measuring neural activity (calcium imaging, extracellular electrophysiology and functional magnetic resonance imaging (fMRI)) operate in domains in which independent noise (shot noise and/or thermal noise) can overwhelm physiological signals. Here, we introduce DeepInterpolation, a general-purpose denoising algorithm that trains a spatiotemporal nonlinear interpolation model using only raw noisy samples. Applying DeepInterpolation to two-photon calcium imaging data yielded up to six times more neuronal segments than those computed from raw data with a 15-fold increase in the single-pixel signal-to-noise ratio (SNR), uncovering single-trial network dynamics that were previously obscured by noise. Extracellular electrophysiology recordings processed with DeepInterpolation yielded 25% more high-quality spiking units than those computed from raw data, while DeepInterpolation produced a 1.6-fold increase in the SNR of individual voxels in fMRI datasets. Denoising was attained without sacrificing spatial or temporal resolution and without access to ground truth training data. We anticipate that DeepInterpolation will provide similar benefits in other domains in which independent noise contaminates spatiotemporally structured datasets.
许多科学学科的进展都受到独立噪声的阻碍。用于测量神经活动的技术(钙成像、细胞外电生理学和功能磁共振成像(fMRI))在独立噪声(散粒噪声和/或热噪声)可能淹没生理信号的区域运行。在这里,我们引入了 DeepInterpolation,这是一种通用的去噪算法,它仅使用原始噪声样本训练时空非线性插值模型。将 DeepInterpolation 应用于双光子钙成像数据,与从原始数据计算相比,产生的神经元片段多了六倍,单个像素的信噪比(SNR)提高了 15 倍,揭示了以前被噪声掩盖的单试网络动态。经过 DeepInterpolation 处理的细胞外电生理学记录比从原始数据计算的记录产生了 25%更多的高质量尖峰单元,而 DeepInterpolation 使 fMRI 数据集中单个体素的 SNR 提高了 1.6 倍。去噪在不牺牲空间或时间分辨率的情况下实现,并且无需访问真实训练数据。我们预计 DeepInterpolation 将在其他独立噪声污染时空结构数据集的领域提供类似的好处。