Center for Functional Protein Assemblies (CPA), Physics Department, Chair of Theoretical Biophysics (T38), Technical University of Munich, Ernst-Otto-Fischer-Str. 8, 85748 Garching, Germany.
J Chem Theory Comput. 2024 Mar 26;20(6):2643-2654. doi: 10.1021/acs.jctc.3c01356. Epub 2024 Mar 11.
It is well-known that proline (Pro) cis-trans isomerization plays a decisive role in the folding and stabilization of proteins. The conformational coupling between isomerization states of different Pro residues in proteins during conformational adaptation processes is not well understood. In the present work, we investigate the coupled cis-trans isomerization of three Pro residues using bradykinin (BK), a partially unstructured nonapeptide hormone, as a model system. We use a recently developed enhanced-sampling molecular dynamics method (ω-bias potential replica exchange molecular dynamics; ωBP-REMD) that allows us to exhaustively sample all combinations of Pro isomer states and obtain converged probability densities of all eight state combinations within 885 ns ωBP-REMD simulations. In agreement with experiment, the all-trans state is seen to be the preferred isomer of zwitterionic aqueous BK. In about a third of its structures, this state presents the characteristic C-terminal β-turn conformation; however, other isomer combinations also contribute significantly to the structural ensemble. Unbiased probabilities can be projected onto the peptide bond dihedral angles of the three Pro residues. This unveils the interdependence of the individual Pro isomerization states, i.e., a possible coupling of the different Pro isomers. The cis/trans equilibrium of a Pro residue can change by up to 2.5 kcal·mol, depending on the isomerization state of other Pro residues. For example, for Pro7, the simulations indicate that its cis state becomes favored compared to its trans state when Pro2 is switched from the trans state to the cis state. Our findings demonstrate the efficiency of the ωBP-REMD methodology and suggest that the coupling of Pro isomerization states may play an even more decisive role in larger folded proteins subject to more conformational restraints.
众所周知,脯氨酸(Pro)顺反异构化在蛋白质的折叠和稳定中起着决定性的作用。在构象适应过程中,蛋白质中不同脯氨酸残基的异构化状态之间的构象偶联尚不清楚。在本工作中,我们以部分无规多肽激素缓激肽(BK)为模型体系,研究了三个脯氨酸残基的顺反异构化的偶联。我们使用了最近开发的增强采样分子动力学方法(ω-偏压复制交换分子动力学;ωBP-REMD),该方法使我们能够彻底地采样所有脯氨酸异构态的组合,并在 885 ns 的 ωBP-REMD 模拟中获得所有八种状态组合的收敛概率密度。与实验一致,全反式状态被认为是两性离子水 BK 的首选异构体。在大约三分之一的结构中,该状态呈现出特征性的 C 端β-转角构象;然而,其他异构体组合也对结构集合有显著贡献。无偏概率可以投射到三个脯氨酸残基的肽键二面角上。这揭示了各个脯氨酸异构化状态之间的相互依存关系,即不同脯氨酸异构体之间可能存在耦合。脯氨酸残基的顺/反平衡可以根据其他脯氨酸残基的异构化状态改变多达 2.5 kcal·mol,例如,对于 Pro7,模拟表明当 Pro2 从反式状态切换到顺式状态时,其顺式状态相对于反式状态变得有利。我们的发现证明了 ωBP-REMD 方法的效率,并表明在受到更多构象限制的更大折叠蛋白质中,脯氨酸异构化状态的耦合可能起着更决定性的作用。