Barthel Lars, Cairns Timothy, Duda Sven, Müller Henri, Dobbert Birgit, Jung Sascha, Briesen Heiko, Meyer Vera
Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.
School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Freising, Germany.
Fungal Biol Biotechnol. 2024 Mar 11;11(1):3. doi: 10.1186/s40694-024-00172-7.
Members of the fungal kingdom are heterotrophic eukaryotes encased in a chitin containing cell wall. This polymer is vital for cell wall stiffness and, ultimately, cell shape. Most fungal genomes contain numerous putative chitin synthase encoding genes. However, systematic functional analysis of the full chitin synthase catalogue in a given species is rare. This greatly limits fundamental understanding and potential applications of manipulating chitin synthesis across the fungal kingdom.
In this study, we conducted in silico profiling and subsequently deleted all predicted chitin synthase encoding genes in the multipurpose cell factory Aspergillus niger. Phylogenetic analysis suggested nine chitin synthases evolved as three distinct groups. Transcript profiling and co-expression network construction revealed remarkably independent expression, strongly supporting specific role(s) for the respective chitin synthases. Deletion mutants confirmed all genes were dispensable for germination, yet impacted colony spore titres, chitin content at hyphal septa, and internal architecture of submerged fungal pellets. We were also able to assign specific roles to individual chitin synthases, including those impacting colony radial growth rates (ChsE, ChsF), lateral cell wall chitin content (CsmA), chemical genetic interactions with a secreted antifungal protein (CsmA, CsmB, ChsE, ChsF), resistance to therapeutics (ChsE), and those that modulated pellet diameter in liquid culture (ChsA, ChsB). From an applied perspective, we show chsF deletion increases total protein in culture supernatant over threefold compared to the control strain, indicating engineering filamentous fungal chitin content is a high priority yet underexplored strategy for strain optimization.
This study has conducted extensive analysis for the full chitin synthase encoding gene repertoire of A. niger. For the first time we reveal both redundant and non-redundant functional roles of chitin synthases in this fungus. Our data shed light on the complex, multifaceted, and dynamic role of chitin in fungal growth, morphology, survival, and secretion, thus improving fundamental understanding and opening new avenues for biotechnological applications in fungi.
真菌界成员是异养真核生物,其细胞壁含有几丁质。这种聚合物对于细胞壁的硬度以及最终的细胞形状至关重要。大多数真菌基因组包含众多推定的几丁质合酶编码基因。然而,对特定物种中完整的几丁质合酶目录进行系统的功能分析却很少见。这极大地限制了对整个真菌界几丁质合成调控的基本理解和潜在应用。
在本研究中,我们进行了计算机分析,随后在多功能细胞工厂黑曲霉中删除了所有预测的几丁质合酶编码基因。系统发育分析表明九个几丁质合酶进化为三个不同的组。转录谱分析和共表达网络构建揭示了显著的独立表达,有力地支持了各个几丁质合酶的特定作用。缺失突变体证实所有基因对于萌发并非必需,但影响菌落孢子滴度、菌丝隔膜处的几丁质含量以及深层真菌菌球的内部结构。我们还能够为单个几丁质合酶赋予特定作用,包括那些影响菌落径向生长速率的(ChsE、ChsF)、横向细胞壁几丁质含量的(CsmA)、与一种分泌型抗真菌蛋白的化学遗传相互作用的(CsmA、CsmB、ChsE、ChsF)、对治疗药物抗性的(ChsE)以及那些在液体培养中调节菌球直径的(ChsA、ChsB)。从应用角度来看,我们发现与对照菌株相比,chsF缺失使培养上清液中的总蛋白增加了三倍多,这表明改造丝状真菌的几丁质含量是菌株优化的一个高度优先但尚未充分探索的策略。
本研究对黑曲霉完整的几丁质合酶编码基因库进行了广泛分析。我们首次揭示了几丁质合酶在这种真菌中的冗余和非冗余功能作用。我们的数据揭示了几丁质在真菌生长、形态、存活和分泌中的复杂、多方面和动态作用,从而增进了基本理解并为真菌生物技术应用开辟了新途径。