Suppr超能文献

在摇瓶培养过程中调整黑曲霉菌球直径、群体异质性和核心结构。

Adjusting Aspergillus niger pellet diameter, population heterogeneity, and core architecture during shake flask cultivation.

作者信息

Engelbert K, Deffur C, Cairns T C, Zhang F, Kheirkhah T, Winter H, Junne S, Neubauer P, Briesen H, Meyer V

机构信息

Institute of Biotechnology, Chair of Applied and Molecular Microbiology, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.

School of Life Sciences Weihenstephan, Chair of Process Systems Engineering, Technical University of Munich, Gregor-Mendel-Straße 4, 85354, Freising, Germany.

出版信息

Biotechnol Biofuels Bioprod. 2025 Jun 12;18(1):62. doi: 10.1186/s13068-025-02661-2.

Abstract

BACKGROUND

Filamentous fungi form a range of macromorphologies during submerged cultivation including dispersed mycelia, loose clumps, and pellets. Macromorphological development is usually heterogenous, whereby mixtures form due to a complex interplay of growth, aggregation, and fragmentation. Submerged macromorphology strongly impacts product titres and rheological performance. Nevertheless, studies that systematically investigate the quantitative effect of cultivation parameters on macromorphology and heterogeneity are lacking.

RESULTS

In this study, we have developed shake flask cultivation conditions which enable reproducible macromorphological control of the multipurpose cell factory Aspergillus niger. Tested culture parameters included various spore titres, concentration of talc microparticles, shaking frequency, and presence/absence of baffles (n = 48 conditions). We quantified macromorphology (e.g., pellet diameter) using high-throughput two-dimensional image analysis and report intra-flask heterogeneity and flask-to-flask variation. These data identified optimal culture conditions which cause minimal macromorphological variation within individual flasks and between technical replicates. We demonstrate that pellet diameter can be reproducibly adjusted between experiments using simple cultivation conditions, and use these parameters to prove larger pellets secrete more protein while consuming less glucose. Linear regression models allowed us to identify spore concentration, shaking frequency, and talc concentration as crucial parameters impacting pellet diameter. Finally, we used a newly developed microtomography (µ-CT) approach to quantify the three-dimensional internal architecture for thousands of pellets at the cellular level. Cultivation conditions drastically impacted internal architecture. For the first time we report distinct types of pellets- those formed from a single (I) or multi-spore (II) core, and additionally pellets formed by agglomeration of mature pellets (III). Remarkably, these data show that a pellet of 2 mm consists of up to about 30 m of total hyphal length and contain approximately 200,000 tips.

CONCLUSIONS

This study identifies simple methods for adjusting macromorphology and heterogeneity, which will enable facile testing of different macromorphologies for maximizing product titres. For the first time we have investigated how pellet internal architecture is impacted by numerous culture parameters. We propose a new pellet classification system based on internal spore core architecture, thus broadening our understanding of fungal macromorphological development and opening up new avenues for bioprocess or strain engineering.

摘要

背景

丝状真菌在深层培养过程中会形成一系列宏观形态,包括分散的菌丝体、松散的菌团和菌球。宏观形态的发育通常是异质性的,由于生长、聚集和破碎的复杂相互作用而形成混合物。深层培养的宏观形态强烈影响产物滴度和流变性能。然而,缺乏系统研究培养参数对宏观形态和异质性定量影响的研究。

结果

在本研究中,我们开发了摇瓶培养条件,能够对多功能细胞工厂黑曲霉进行可重复的宏观形态控制。测试的培养参数包括各种孢子滴度、滑石粉微粒浓度、振荡频率以及有无挡板(n = 48种条件)。我们使用高通量二维图像分析对宏观形态(例如菌球直径)进行定量,并报告瓶内异质性和瓶间差异。这些数据确定了最佳培养条件,这些条件在单个摇瓶内以及技术重复之间引起的宏观形态变化最小。我们证明,使用简单的培养条件可以在实验之间可重复地调节菌球直径,并使用这些参数证明较大的菌球分泌更多蛋白质,同时消耗更少的葡萄糖。线性回归模型使我们能够确定孢子浓度、振荡频率和滑石粉浓度是影响菌球直径的关键参数。最后,我们使用新开发的显微断层扫描(µ-CT)方法在细胞水平上对数千个菌球的三维内部结构进行定量。培养条件对内部结构有巨大影响。我们首次报告了不同类型的菌球——由单个(I)或多个孢子(II)核心形成的菌球,以及由成熟菌球聚集形成的菌球(III)。值得注意的是,这些数据表明,一个2毫米的菌球由长达约30米的总菌丝长度组成,包含约200,000个菌丝尖端。

结论

本研究确定了调节宏观形态和异质性的简单方法,这将有助于轻松测试不同的宏观形态以最大化产物滴度。我们首次研究了众多培养参数如何影响菌球内部结构。我们基于内部孢子核心结构提出了一种新的菌球分类系统,从而拓宽了我们对真菌宏观形态发育的理解,并为生物过程或菌株工程开辟了新途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3afb/12160380/90c1b45cb0b6/13068_2025_2661_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验