Suppr超能文献

黑曲霉中条件形态发生基因表达联系的回归建模,量化了生长速率、适应性和宏观形态对蛋白质分泌的影响。

Regression modelling of conditional morphogene expression links and quantifies the impact of growth rate, fitness and macromorphology with protein secretion in Aspergillus niger.

作者信息

Cairns Timothy C, de Kanter Tom, Zheng Xiaomei Z, Zheng Ping, Sun Jibin, Meyer Vera

机构信息

Chair of Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Straße Des 17. Juni 135, 10623, Berlin, Germany.

Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.

出版信息

Biotechnol Biofuels Bioprod. 2023 Jun 2;16(1):95. doi: 10.1186/s13068-023-02345-9.

Abstract

BACKGROUND

Filamentous fungi are used as industrial cell factories to produce a diverse portfolio of proteins, organic acids, and secondary metabolites in submerged fermentation. Generating optimized strains for maximum product titres relies on a complex interplay of molecular, cellular, morphological, and macromorphological factors that are not yet fully understood.

RESULTS

In this study, we generate six conditional expression mutants in the protein producing ascomycete Aspergillus niger and use them as tools to reverse engineer factors which impact total secreted protein during submerged growth. By harnessing gene coexpression network data, we bioinformatically predicted six morphology and productivity associated 'morphogenes', and placed them under control of a conditional Tet-on gene switch using CRISPR-Cas genome editing. Strains were phenotypically screened on solid and liquid media following titration of morphogene expression, generating quantitative measurements of growth rate, filamentous morphology, response to various abiotic perturbations, Euclidean parameters of submerged macromorphologies, and total secreted protein. These data were built into a multiple linear regression model, which identified radial growth rate and fitness under heat stress as positively correlated with protein titres. In contrast, diameter of submerged pellets and cell wall integrity were negatively associated with productivity. Remarkably, our model predicts over 60% of variation in A. niger secreted protein titres is dependent on these four variables, suggesting that they play crucial roles in productivity and are high priority processes to be targeted in future engineering programs. Additionally, this study suggests A. niger dlpA and crzA genes are promising new leads for enhancing protein titres during fermentation.

CONCLUSIONS

Taken together this study has identified several potential genetic leads for maximizing protein titres, delivered a suite of chassis strains with user controllable macromorphologies during pilot fermentation studies, and has quantified four crucial factors which impact secreted protein titres in A. niger.

摘要

背景

丝状真菌被用作工业细胞工厂,在深层发酵中生产多种蛋白质、有机酸和次级代谢产物。生成用于获得最大产物滴度的优化菌株依赖于分子、细胞、形态和宏观形态因素之间复杂的相互作用,而这些因素尚未完全被理解。

结果

在本研究中,我们在产蛋白子囊菌黑曲霉中生成了六个条件表达突变体,并将它们用作逆向工程影响深层生长过程中总分泌蛋白的因素的工具。通过利用基因共表达网络数据,我们通过生物信息学预测了六个与形态和生产力相关的“形态发生基因”,并使用CRISPR-Cas基因组编辑将它们置于条件性Tet-on基因开关的控制之下。在滴定形态发生基因表达后,在固体和液体培养基上对菌株进行表型筛选,生成生长速率、丝状形态、对各种非生物扰动的响应、深层宏观形态的欧几里得参数以及总分泌蛋白的定量测量。这些数据被纳入多元线性回归模型,该模型确定径向生长速率和热应激下的适应性与蛋白滴度呈正相关。相比之下,深层菌球直径和细胞壁完整性与生产力呈负相关。值得注意的是,我们的模型预测黑曲霉分泌蛋白滴度超过60%的变化取决于这四个变量,这表明它们在生产力中起关键作用,并且是未来工程计划中需要靶向的高优先级过程。此外,本研究表明黑曲霉dlpA和crzA基因是提高发酵过程中蛋白滴度的有前景的新线索。

结论

综上所述,本研究确定了几个用于最大化蛋白滴度的潜在遗传线索,在中试发酵研究中提供了一组具有用户可控宏观形态的底盘菌株,并量化了影响黑曲霉分泌蛋白滴度的四个关键因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d83a/10239186/0f46986018ce/13068_2023_2345_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验