Suppr超能文献

利用红外显微光谱法预测口腔鳞状细胞癌的预后

Prediction of prognosis in oral squamous cell carcinoma using infrared microspectroscopy.

作者信息

Whitley Conor A, Ellis Barnaby G, Triantafyllou Asterios, Gunning Philip J, Gardner Peter, Barrett Steve D, Shaw Richard J, Smith Caroline I, Weightman Peter, Risk Janet M

机构信息

Department of Physics, University of Liverpool, Liverpool, UK.

Department of Pathology, Liverpool Clinical Laboratories, University of Liverpool, Liverpool, UK.

出版信息

Cancer Med. 2024 Mar;13(5):e7094. doi: 10.1002/cam4.7094.

Abstract

BACKGROUND

Estimation of prognosis of oral squamous cell carcinoma (OSCC) is inaccurate prior to surgery, only being effected following subsequent pathological analysis of the primary tumour and excised lymph nodes. Consequently, a proportion of patients are overtreated, with an increase in morbidity, or undertreated, with inadequate margins and risk of recurrence. We hypothesise that it is possible to accurately characterise clinical outcomes from infrared spectra arising from diagnostic biopsies. In this first step, we correlate survival with IR spectra derived from the primary tumour.

METHODS

Infrared spectra were collected from tumour tissue from 29 patients with OSCC and subject to classification modelling.

RESULTS

The model had a median AUROC of 0.89 with regard to prognosis, a median specificity of 0.83, and a hazard ratio of 6.29 in univariate Cox proportional hazard modelling.

CONCLUSION

The data suggest that FTIR spectra may be a useful early biomarker of prognosis in OSCC.

摘要

背景

口腔鳞状细胞癌(OSCC)术前预后评估不准确,只有在对原发肿瘤和切除的淋巴结进行后续病理分析后才能确定。因此,一部分患者接受了过度治疗,导致发病率增加,或者接受了治疗不足,切缘不充分且有复发风险。我们假设可以通过诊断性活检产生的红外光谱准确地描述临床结果。在第一步中,我们将生存率与源自原发肿瘤的红外光谱进行关联。

方法

收集了29例OSCC患者肿瘤组织的红外光谱,并进行分类建模。

结果

在单变量Cox比例风险建模中,该模型的预后中位受试者工作特征曲线下面积(AUROC)为0.89,中位特异性为0.83,风险比为6.29。

结论

数据表明傅里叶变换红外光谱(FTIR)可能是OSCC预后的一种有用的早期生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c2f4/10928453/5c1f817421ca/CAM4-13-e7094-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验