Suppr超能文献

利用红外吸收光谱预测口腔上皮异型增生的恶变。

Prediction of malignant transformation in oral epithelial dysplasia using infrared absorbance spectra.

机构信息

Department of Physics, University of Liverpool, Liverpool, United Kingdom.

Department of Pathology, Liverpool Clinical Laboratories, University of Liverpool, Liverpool, United Kingdom.

出版信息

PLoS One. 2022 Mar 25;17(3):e0266043. doi: 10.1371/journal.pone.0266043. eCollection 2022.

Abstract

Oral epithelial dysplasia (OED) is a histopathologically-defined, potentially premalignant condition of the oral cavity. The rate of transformation to frank carcinoma is relatively low (12% within 2 years) and prediction based on histopathological grade is unreliable, leading to both over- and under-treatment. Alternative approaches include infrared (IR) spectroscopy, which is able to classify cancerous and non-cancerous tissue in a number of cancers, including oral. The aim of this study was to explore the capability of FTIR (Fourier-transform IR) microscopy and machine learning as a means of predicting malignant transformation of OED. Supervised, retrospective analysis of longitudinally-collected OED biopsy samples from 17 patients with high risk OED lesions: 10 lesions transformed and 7 did not over a follow-up period of more than 3 years. FTIR spectra were collected from routine, unstained histopathological sections and machine learning used to predict malignant transformation, irrespective of OED classification. PCA-LDA (principal component analysis followed by linear discriminant analysis) provided evidence that the subsequent transforming status of these 17 lesions could be predicted from FTIR data with a sensitivity of 79 ± 5% and a specificity of 76 ± 5%. Six key wavenumbers were identified as most important in this classification. Although this pilot study used a small cohort, the strict inclusion criteria and classification based on known outcome, rather than OED grade, make this a novel study in the field of FTIR in oral cancer and support the clinical potential of this technology in the surveillance of OED.

摘要

口腔上皮异型增生(OED)是一种组织病理学定义的、潜在的口腔癌前病变。向真正癌转化的比率相对较低(2 年内为 12%),基于组织病理学分级的预测不可靠,导致过度治疗和治疗不足。替代方法包括近红外(IR)光谱,它能够在包括口腔在内的多种癌症中对癌性和非癌性组织进行分类。本研究旨在探讨傅里叶变换红外(FTIR)显微镜和机器学习作为预测 OED 恶性转化的一种手段的能力。对 17 例高危 OED 病变的纵向采集的 OED 活检样本进行了有监督的回顾性分析:10 个病变发生转化,7 个病变在超过 3 年的随访中未发生转化。从常规未染色的组织病理学切片中采集 FTIR 光谱,并使用机器学习来预测恶性转化,而不考虑 OED 分类。主成分分析-线性判别分析(PCA-LDA)提供了证据,表明可以从 FTIR 数据中预测这 17 个病变的后续转化状态,敏感性为 79%±5%,特异性为 76%±5%。确定了 6 个关键波数在该分类中最为重要。尽管这项初步研究使用了一个小队列,但严格的纳入标准和基于已知结果的分类,而不是 OED 分级,使得这项研究在口腔癌的 FTIR 领域具有创新性,并支持该技术在 OED 监测中的临床潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa48/8956195/b83b40d97862/pone.0266043.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验