Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Joint Centre of Translational Medicine, Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
Adv Mater. 2024 Jun;36(25):e2400366. doi: 10.1002/adma.202400366. Epub 2024 Mar 19.
Given the challenge of multidrug resistance in antibiotics, non-antibiotic-dependent antibacterial strategies show promise for anti-infective therapy. VC MXene-based nanomaterials have demonstrated strong biocompatibility and photothermal conversion efficiency (PCE) for photothermal therapy (PTT). However, the limitation of VC MXene's laser irradiation to the near-infrared region I (NIR-I) restricts tissue penetration, making it difficult to achieve complete bacterial eradication with single-effect therapeutic strategies. To address this, Pt nanoparticles (Pt NPs) are attached to VC, forming artificial nanoplatforms (Pt@VC). Pt@VC exhibits enhanced PCE (59.6%) and a longer irradiation laser (NIR-II) due to the surface plasmon resonance effect of Pt NPs and VC. Notably, Pt@VC displays dual enzyme-like activity with chemodynamic therapy (CDT) and NIR-II enhanced dual enzyme-like activity. The biocatalytic mechanism of Pt@VC is elucidated using density functional theory. In an in vivo animal model, Pt@VC effectively eliminates methicillin-resistant Staphylococcus aureus from deep-seated tissues in subcutaneous abscesses and bacterial keratitis environments, accelerating abscess resolution and promoting wound and cornea healing through the synergistic effects of PTT/CDT. Transcriptomic analysis reveals that Pt@VC targets inflammatory pathways, providing insight into its therapeutic mechanism. This study presents a promising therapeutic approach involving hyperthermia-amplified biocatalysis with Pt NPs and MXene nanocomposites.
鉴于抗生素耐药性的挑战,非抗生素依赖的抗菌策略显示出在抗感染治疗方面的应用前景。基于 VC MXene 的纳米材料在光热治疗(PTT)中表现出很强的生物相容性和光热转换效率(PCE)。然而,VC MXene 的激光照射局限在近红外一区(NIR-I)限制了组织穿透性,使得单一效应治疗策略难以实现完全的细菌消除。为了解决这个问题,Pt 纳米粒子(Pt NPs)被附着到 VC 上,形成人工纳米平台(Pt@VC)。Pt@VC 由于 Pt NPs 和 VC 的表面等离子体共振效应,表现出增强的 PCE(59.6%)和更长的激光照射(NIR-II)。值得注意的是,Pt@VC 具有化学动力学治疗(CDT)和 NIR-II 增强的双酶样活性的双重酶样活性。Pt@VC 的生物催化机制通过密度泛函理论进行了解析。在体内动物模型中,Pt@VC 有效地从皮下脓肿和细菌性角膜炎环境中的深部组织中消除耐甲氧西林金黄色葡萄球菌,通过 PTT/CDT 的协同作用加速脓肿的消退和促进伤口和角膜的愈合。转录组分析揭示了 Pt@VC 靶向炎症途径,为其治疗机制提供了深入的了解。本研究提出了一种有前途的治疗方法,涉及热增强的生物催化作用,使用 Pt NPs 和 MXene 纳米复合材料。
ACS Appl Bio Mater. 2021-5-17
Mater Today Bio. 2025-7-18
Mater Today Bio. 2025-7-2
Nanomicro Lett. 2025-7-7
J Nanobiotechnology. 2025-7-1