文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

工程纳米材料驱动生物膜动力学破坏的机制见解与治疗创新

Mechanistic insights and therapeutic innovations in engineered nanomaterial-driven disruption of biofilm dynamics.

作者信息

Ullah Sadeeq, Chen Yong, Wu Chunyan, Abbas Yasir, Zhong Yangqing, Chen Xiaohui, Tan Junyin, Cheng Hefa, Li Lu

机构信息

Guangdong Provincial Key Laboratory of Medical Immunology and Molecular Diagnostics, The First Dongguan Affiliated Hospital, School of Medical Technology, Guangdong Medical University Dongguan 523808 China

Department of Medical Laboratory, Affiliated Cancer Hospital of Chengdu Medical College, Chengdu Seventh People's Hospital Chengdu 610231 China.

出版信息

RSC Adv. 2025 Jul 7;15(29):23187-23222. doi: 10.1039/d5ra01711d. eCollection 2025 Jul 4.


DOI:10.1039/d5ra01711d
PMID:40626069
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12230804/
Abstract

Bacteria employ biofilm formation as a survival strategy, characterized by the self-assembly of cells into 3D architectures encapsulated in an extracellular polymeric substance (EPS) that results in reduced antibiotic efficacy, increased tolerance, and emergence of multidrug resistance phenotypes. To overcome this challenge, persistent efforts are directed toward developing cutting-edge approaches and agents that rejuvenate antibiotic efficacy, mitigate biofilm formation, and eradicate biofilm-associated bacterial infections. Within this framework, nanotechnology has emerged as a pivotal tool for developing innovative functional materials with tailored attributes, exhibiting substantial potential in addressing the global health challenge of antibiotic resistance and biofilm-associated infections. This updated review article provides a comprehensive overview, commencing with a thorough analysis of biofilm formation and its implications, followed by a critical evaluation of cutting-edge strategies derived from recent research advancements. Our discussion encompasses novel strategies, including traditional nanomaterials, micro-nanobubbles, multifunctional nanozyme-mimetic platforms, artificial phage-like structures, and sophisticated nano-microrobotic systems. Each strategy is assessed for its potential to effectively target biofilms, enhance antimicrobial penetration, and restore antibiotic susceptibility. We anticipate that this timely review will inform and inspire innovative research directions, focusing on the rational design and application of advanced nanomaterials for targeted biofilm modulation and efficacious treatment, thereby advancing healthcare solutions.

摘要

细菌将生物膜形成作为一种生存策略,其特征是细胞自组装成三维结构,被包裹在细胞外聚合物(EPS)中,这导致抗生素疗效降低、耐受性增加以及多重耐药表型的出现。为了克服这一挑战,人们不断努力开发前沿方法和药物,以恢复抗生素疗效、减轻生物膜形成并根除与生物膜相关的细菌感染。在此框架内,纳米技术已成为开发具有定制属性的创新功能材料的关键工具,在应对抗生素耐药性和与生物膜相关感染的全球健康挑战方面展现出巨大潜力。这篇更新的综述文章提供了全面概述,首先对生物膜形成及其影响进行深入分析,接着对源自近期研究进展的前沿策略进行批判性评估。我们的讨论涵盖了新策略,包括传统纳米材料、微纳米气泡、多功能纳米酶模拟平台、人工噬菌体样结构以及复杂的纳米微机器人系统。对每种策略有效靶向生物膜、增强抗菌渗透以及恢复抗生素敏感性的潜力进行了评估。我们预计,这篇及时的综述将为创新研究方向提供信息并带来启发,重点关注先进纳米材料的合理设计和应用,以实现靶向生物膜调控和有效治疗,从而推动医疗保健解决方案的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/99bf0217d9c1/d5ra01711d-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/01fee6f070aa/d5ra01711d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/15d9682674c8/d5ra01711d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/bbaf9bd92ebd/d5ra01711d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/609ff805619d/d5ra01711d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/a11938abf9ae/d5ra01711d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/b9ce31fcfd08/d5ra01711d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/dc8f591dcb7f/d5ra01711d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/0a347318a0bd/d5ra01711d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/1d8a3dcecd58/d5ra01711d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/94fbfd2cdbbd/d5ra01711d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/c05e915174ca/d5ra01711d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/1448078bcb41/d5ra01711d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/48f0b5b326c1/d5ra01711d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/f56b56cfc89b/d5ra01711d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/4e7380dfcd7a/d5ra01711d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/d4f4abf75b79/d5ra01711d-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/8345af03891d/d5ra01711d-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/99bf0217d9c1/d5ra01711d-p3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/01fee6f070aa/d5ra01711d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/15d9682674c8/d5ra01711d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/bbaf9bd92ebd/d5ra01711d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/609ff805619d/d5ra01711d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/a11938abf9ae/d5ra01711d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/b9ce31fcfd08/d5ra01711d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/dc8f591dcb7f/d5ra01711d-f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/0a347318a0bd/d5ra01711d-f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/1d8a3dcecd58/d5ra01711d-f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/94fbfd2cdbbd/d5ra01711d-f10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/c05e915174ca/d5ra01711d-f11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/1448078bcb41/d5ra01711d-f12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/48f0b5b326c1/d5ra01711d-f13.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/f56b56cfc89b/d5ra01711d-f14.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/4e7380dfcd7a/d5ra01711d-f15.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/d4f4abf75b79/d5ra01711d-p1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/8345af03891d/d5ra01711d-p2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f97/12230804/99bf0217d9c1/d5ra01711d-p3.jpg

相似文献

[1]
Mechanistic insights and therapeutic innovations in engineered nanomaterial-driven disruption of biofilm dynamics.

RSC Adv. 2025-7-7

[2]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[3]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[4]
Interventions to improve antibiotic prescribing practices for hospital inpatients.

Cochrane Database Syst Rev. 2017-2-9

[5]
Antidepressants for pain management in adults with chronic pain: a network meta-analysis.

Health Technol Assess. 2024-10

[6]
Selected honey as a multifaceted antimicrobial agent: review of compounds, mechanisms, and research challenges.

Future Microbiol. 2025

[7]
Factors that influence parents' and informal caregivers' views and practices regarding routine childhood vaccination: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2021-10-27

[8]
Factors that impact on the use of mechanical ventilation weaning protocols in critically ill adults and children: a qualitative evidence-synthesis.

Cochrane Database Syst Rev. 2016-10-4

[9]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[10]
Pain management for women in labour: an overview of systematic reviews.

Cochrane Database Syst Rev. 2012-3-14

本文引用的文献

[1]
Biohybrid Microrobots Based on Jellyfish Stinging Capsules and Janus Particles for In Vitro Deep-Tissue Drug Penetration.

Small Sci. 2025-2-11

[2]
Current Status and Future Developments in NIR-II-emitting Organic Small Molecule Fluorophores for Bioimaging and Phototherapy.

Small. 2025-7

[3]
Nanomaterial-Based Strategies to Combat Antibiotic Resistance: Mechanisms and Applications.

Antibiotics (Basel). 2025-2-18

[4]
Nanomaterial-enabled anti-biofilm strategies: new opportunities for treatment of bacterial infections.

Nanoscale. 2025-3-7

[5]
NIR-II upconversion nanomaterials for biomedical applications.

Nanoscale. 2025-2-6

[6]
Bacteria-activated macrophage membrane coated ROS-responsive nanoparticle for targeted delivery of antibiotics to infected wounds.

J Nanobiotechnology. 2024-12-19

[7]
Miniature Robots for Battling Bacterial Infection.

ACS Nano. 2024-11-26

[8]
Recent Development of Nanozymes for Combating Bacterial Drug Resistance: A Review.

Adv Healthc Mater. 2025-3

[9]
Advances in silver nanoparticles: a comprehensive review on their potential as antimicrobial agents and their mechanisms of action elucidated by proteomics.

Front Microbiol. 2024-7-31

[10]
Nanozyme-Enabled Biomedical Diagnosis: Advances, Trends, and Challenges.

Adv Healthc Mater. 2025-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索